Spaces:
Build error
Build error
Commit
·
3edffb9
1
Parent(s):
d927b86
Upload LengthRegulator.py
Browse files- LengthRegulator.py +62 -0
LengthRegulator.py
ADDED
|
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2019 Tomoki Hayashi
|
| 2 |
+
# MIT License (https://opensource.org/licenses/MIT)
|
| 3 |
+
# Adapted by Florian Lux 2021
|
| 4 |
+
|
| 5 |
+
from abc import ABC
|
| 6 |
+
|
| 7 |
+
import torch
|
| 8 |
+
|
| 9 |
+
from Utility.utils import pad_list
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
class LengthRegulator(torch.nn.Module, ABC):
|
| 13 |
+
"""
|
| 14 |
+
Length regulator module for feed-forward Transformer.
|
| 15 |
+
|
| 16 |
+
This is a module of length regulator described in
|
| 17 |
+
`FastSpeech: Fast, Robust and Controllable Text to Speech`_.
|
| 18 |
+
The length regulator expands char or
|
| 19 |
+
phoneme-level embedding features to frame-level by repeating each
|
| 20 |
+
feature based on the corresponding predicted durations.
|
| 21 |
+
|
| 22 |
+
.. _`FastSpeech: Fast, Robust and Controllable Text to Speech`:
|
| 23 |
+
https://arxiv.org/pdf/1905.09263.pdf
|
| 24 |
+
|
| 25 |
+
"""
|
| 26 |
+
|
| 27 |
+
def __init__(self, pad_value=0.0):
|
| 28 |
+
"""
|
| 29 |
+
Initialize length regulator module.
|
| 30 |
+
|
| 31 |
+
Args:
|
| 32 |
+
pad_value (float, optional): Value used for padding.
|
| 33 |
+
"""
|
| 34 |
+
super(LengthRegulator, self).__init__()
|
| 35 |
+
self.pad_value = pad_value
|
| 36 |
+
|
| 37 |
+
def forward(self, xs, ds, alpha=1.0):
|
| 38 |
+
"""
|
| 39 |
+
Calculate forward propagation.
|
| 40 |
+
|
| 41 |
+
Args:
|
| 42 |
+
xs (Tensor): Batch of sequences of char or phoneme embeddings (B, Tmax, D).
|
| 43 |
+
ds (LongTensor): Batch of durations of each frame (B, T).
|
| 44 |
+
alpha (float, optional): Alpha value to control speed of speech.
|
| 45 |
+
|
| 46 |
+
Returns:
|
| 47 |
+
Tensor: replicated input tensor based on durations (B, T*, D).
|
| 48 |
+
"""
|
| 49 |
+
if alpha != 1.0:
|
| 50 |
+
assert alpha > 0
|
| 51 |
+
ds = torch.round(ds.float() * alpha).long()
|
| 52 |
+
|
| 53 |
+
if ds.sum() == 0:
|
| 54 |
+
ds[ds.sum(dim=1).eq(0)] = 1
|
| 55 |
+
|
| 56 |
+
return pad_list([self._repeat_one_sequence(x, d) for x, d in zip(xs, ds)], self.pad_value)
|
| 57 |
+
|
| 58 |
+
def _repeat_one_sequence(self, x, d):
|
| 59 |
+
"""
|
| 60 |
+
Repeat each frame according to duration
|
| 61 |
+
"""
|
| 62 |
+
return torch.repeat_interleave(x, d, dim=0)
|