import streamlit as st import concurrent.futures from functools import partial import numpy as np from io import StringIO import sys import time # File Imports from embedding import get_embeddings # Ensure this file/module is available from preprocess import filtering # Ensure this file/module is available from search import * # Cosine Similarity Function def cosine_similarity(vec1, vec2): vec1 = np.array(vec1) vec2 = np.array(vec2) dot_product = np.dot(vec1, vec2) magnitude_vec1 = np.linalg.norm(vec1) magnitude_vec2 = np.linalg.norm(vec2) if magnitude_vec1 == 0 or magnitude_vec2 == 0: return 0.0 cosine_sim = dot_product / (magnitude_vec1 * magnitude_vec2) return cosine_sim # Logger class to capture output class StreamCapture: def __init__(self): self.output = StringIO() self._stdout = sys.stdout def __enter__(self): sys.stdout = self.output return self.output def __exit__(self, exc_type, exc_val, exc_tb): sys.stdout = self._stdout # Main Function def score(main_product, main_url, search, logger, log_area): data = {} if search == 'all': similar = extract_similar_products(main_product)[:1] with concurrent.futures.ThreadPoolExecutor() as executor: futures = [] search_functions = [search_google, search_duckduckgo, search_github, search_wikipedia] for search_func in search_functions: futures.append(executor.submit(partial(filtering, search_func(similar), main_product, similar))) for future in concurrent.futures.as_completed(futures): data[similar] = future.result() else: similar = extract_similar_products(main_product)[:1] for product in similar: if search == 'google': data[product] = filtering(search_google(product), main_product, product) elif search == 'duckduckgo': data[product] = filtering(search_duckduckgo(product), main_product, product) elif search == 'archive': data[product] = filtering(search_archive(product), main_product, product) elif search == 'github': data[product] = filtering(search_github(product), main_product, product) elif search == 'wikipedia': data[product] = filtering(search_wikipedia(product), main_product, product) logger.write("\n\nFiltered Links ------------------>\n") logger.write(str(data) + "\n") log_area.text(logger.getvalue()) logger.write("\n\nCreating Main product Embeddings ---------->\n") main_result, main_embedding = get_embeddings(main_url) log_area.text(logger.getvalue()) cosine_sim_scores = [] logger.write("\n\nCreating Similar product Embeddings ---------->\n") log_area.text(logger.getvalue()) print("main",main_embedding) for product in data: for link in data[product][:2]: similar_result, similar_embedding = get_embeddings(link) log_area.text(logger.getvalue()) print(similar_embedding) for i in range(len(main_embedding)): score = cosine_similarity(main_embedding[i], similar_embedding[i]) cosine_sim_scores.append((product, link, i, score)) log_area.text(logger.getvalue()) logger.write("--------------- DONE -----------------\n") log_area.text(logger.getvalue()) return cosine_sim_scores, main_result # Streamlit Interface st.title("Product Infringement Checker") # Inputs main_product = st.text_input('Enter Main Product Name', 'Philips led 7w bulb') main_url = st.text_input('Enter Main Product Manual URL', 'https://www.assets.signify.com/is/content/PhilipsConsumer/PDFDownloads/Colombia/technical-sheets/ODLI20180227_001-UPD-es_CO-Ficha_Tecnica_LED_MR16_Master_7W_Dim_12V_CRI90.pdf') search_method = st.selectbox('Choose Search Engine', ['duckduckgo', 'google', 'archive', 'github', 'wikipedia', 'all']) if st.button('Check for Infringement'): log_output = st.empty() # Placeholder for log output with st.spinner('Processing...'): with StreamCapture() as logger: cosine_sim_scores, main_result = score(main_product, main_url, search_method, logger, log_output) st.success('Processing complete!') st.subheader("Cosine Similarity Scores") # = score(main_product, main_url, search, logger, log_output) tags = ['Introduction', 'Specifications', 'Product Overview', 'Safety Information', 'Installation Instructions', 'Setup and Configuration', 'Operation Instructions', 'Maintenance and Care', 'Troubleshooting', 'Warranty Information', 'Legal Information'] for product, link, index, value in cosine_sim_scores: if not index: st.write(f"Product: {product}, Link: {link}") st.write(f"{tags[index]:<20} Cosine Similarity Score: {value:.2f}")