New Changes
Browse files- embedding.py +262 -262
- infridgement_score.py +174 -0
- preprocess.py +184 -168
embedding.py
CHANGED
@@ -1,263 +1,263 @@
|
|
1 |
-
from PyPDF2 import PdfReader
|
2 |
-
import requests
|
3 |
-
import json
|
4 |
-
import os
|
5 |
-
import concurrent.futures
|
6 |
-
import random
|
7 |
-
from langchain_google_genai import ChatGoogleGenerativeAI
|
8 |
-
from langchain_community.document_loaders import WebBaseLoader
|
9 |
-
from langchain_community.document_loaders import PyPDFLoader
|
10 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
11 |
-
import google.generativeai as genai
|
12 |
-
from io import BytesIO
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
gemini = ChatGoogleGenerativeAI(model="gemini-1.0-pro-001",google_api_key='AIzaSyBmZtXjJgp7yIAo9joNCZGSxK9PbGMcVaA',temperature = 0.1)
|
17 |
-
gemini1 = ChatGoogleGenerativeAI(model="gemini-1.0-pro-001",google_api_key='AIzaSyABsaDjPujPCBlz4LLxcXDX_bDA9uEL7Xc',temperature = 0.1)
|
18 |
-
gemini2 = ChatGoogleGenerativeAI(model="gemini-1.0-pro-001",google_api_key='AIzaSyBCIQgt1uK7-sJH5Afg5vUZ99EWkx5gSU0',temperature = 0.1)
|
19 |
-
gemini3 = ChatGoogleGenerativeAI(model="gemini-1.0-pro-001",google_api_key='AIzaSyBot9W5Q-BKQ66NAYRUmVeloXWEbXOXTmM',temperature = 0.1)
|
20 |
-
|
21 |
-
genai.configure(api_key="AIzaSyBmZtXjJgp7yIAo9joNCZGSxK9PbGMcVaA")
|
22 |
-
|
23 |
-
|
24 |
-
def pdf_extractor(link):
|
25 |
-
text = ''
|
26 |
-
|
27 |
-
try:
|
28 |
-
# Fetch the PDF file from the URL
|
29 |
-
response = requests.get(link)
|
30 |
-
response.raise_for_status() # Raise an error for bad status codes
|
31 |
-
|
32 |
-
# Use BytesIO to handle the PDF content in memory
|
33 |
-
pdf_file = BytesIO(response.content)
|
34 |
-
|
35 |
-
# Load the PDF file
|
36 |
-
reader = PdfReader(pdf_file)
|
37 |
-
for page in reader.pages:
|
38 |
-
text += page.extract_text() # Extract text from each page
|
39 |
-
|
40 |
-
except requests.exceptions.HTTPError as e:
|
41 |
-
print(f'HTTP error occurred: {e}')
|
42 |
-
except Exception as e:
|
43 |
-
print(f'An error occurred: {e}')
|
44 |
-
|
45 |
-
return [text]
|
46 |
-
|
47 |
-
def web_extractor(link):
|
48 |
-
text = ''
|
49 |
-
|
50 |
-
try:
|
51 |
-
loader = WebBaseLoader(link)
|
52 |
-
pages = loader.load_and_split()
|
53 |
-
|
54 |
-
for page in pages:
|
55 |
-
text+=page.page_content
|
56 |
-
except:
|
57 |
-
pass
|
58 |
-
|
59 |
-
return [text]
|
60 |
-
|
61 |
-
|
62 |
-
def feature_extraction(tag, history , context):
|
63 |
-
|
64 |
-
prompt = f'''
|
65 |
-
You are an intelligent assistant tasked with updating product information. You have two data sources:
|
66 |
-
1. Tag_History: Previously gathered information about the product.
|
67 |
-
2. Tag_Context: New data that might contain additional details.
|
68 |
-
Your job is to read the Tag_Context and update the relevant field in the Tag_History with any new details found. The field to be updated is the {tag} FIELD.
|
69 |
-
Guidelines:
|
70 |
-
- Only add new details that are relevant to the {tag} FIELD.
|
71 |
-
- Do not add or modify any other fields in the Tag_History.
|
72 |
-
- Ensure your response is in coherent sentences, integrating the new details seamlessly into the existing information.
|
73 |
-
Here is the data:
|
74 |
-
Tag_Context: {str(context)}
|
75 |
-
Tag_History: {history}
|
76 |
-
Respond with the updated Tag_History.
|
77 |
-
'''
|
78 |
-
|
79 |
-
# model = random.choice([gemini,gemini1,gemini2,gemini3])
|
80 |
-
result = gemini1.invoke(prompt)
|
81 |
-
|
82 |
-
return result.content
|
83 |
-
|
84 |
-
def detailed_feature_extraction(find, context):
|
85 |
-
|
86 |
-
prompt = f'''
|
87 |
-
You are an intelligent assistant tasked with finding product information. You have one data source and one output format:
|
88 |
-
1. Context: The gathered information about the product.
|
89 |
-
2. Format: Details which need to be filled based on Context.
|
90 |
-
Your job is to read the Context and update the relevant field in Format using Context.
|
91 |
-
Guidelines:
|
92 |
-
- Only add details that are relevant to the individual FIELD.
|
93 |
-
- Do not add or modify any other fields in the Format.
|
94 |
-
- If nothing found return None.
|
95 |
-
Here is the data:
|
96 |
-
The Context is {str(context)}
|
97 |
-
The Format is {str(find)}
|
98 |
-
'''
|
99 |
-
|
100 |
-
model = random.choice([gemini,gemini1,gemini2,gemini3])
|
101 |
-
result = model.invoke(prompt)
|
102 |
-
|
103 |
-
return result.content
|
104 |
-
|
105 |
-
def detailed_history(history):
|
106 |
-
|
107 |
-
details = {
|
108 |
-
"Introduction": {
|
109 |
-
"Product Name": None,
|
110 |
-
"Overview of the product": None,
|
111 |
-
"Purpose of the manual": None,
|
112 |
-
"Audience": None,
|
113 |
-
"Additional Details": None
|
114 |
-
},
|
115 |
-
"Specifications": {
|
116 |
-
"Technical specifications": None,
|
117 |
-
"Performance metrics": None,
|
118 |
-
"Additional Details": None
|
119 |
-
},
|
120 |
-
"Product Overview": {
|
121 |
-
"Product features": None,
|
122 |
-
"Key components and parts": None,
|
123 |
-
"Additional Details": None
|
124 |
-
},
|
125 |
-
"Safety Information": {
|
126 |
-
"Safety warnings and precautions": None,
|
127 |
-
"Compliance and certification information": None,
|
128 |
-
"Additional Details": None
|
129 |
-
},
|
130 |
-
"Installation Instructions": {
|
131 |
-
"Unboxing and inventory checklist": None,
|
132 |
-
"Step-by-step installation guide": None,
|
133 |
-
"Required tools and materials": None,
|
134 |
-
"Additional Details": None
|
135 |
-
},
|
136 |
-
"Setup and Configuration": {
|
137 |
-
"Initial setup procedures": None,
|
138 |
-
"Configuration settings": None,
|
139 |
-
"Troubleshooting setup issues": None,
|
140 |
-
"Additional Details": None
|
141 |
-
},
|
142 |
-
"Operation Instructions": {
|
143 |
-
"How to use the product": None,
|
144 |
-
"Detailed instructions for different functionalities": None,
|
145 |
-
"User interface guide": None,
|
146 |
-
"Additional Details": None
|
147 |
-
},
|
148 |
-
"Maintenance and Care": {
|
149 |
-
"Cleaning instructions": None,
|
150 |
-
"Maintenance schedule": None,
|
151 |
-
"Replacement parts and accessories": None,
|
152 |
-
"Additional Details": None
|
153 |
-
},
|
154 |
-
"Troubleshooting": {
|
155 |
-
"Common issues and solutions": None,
|
156 |
-
"Error messages and their meanings": None,
|
157 |
-
"Support Information": None,
|
158 |
-
"Additional Details": None
|
159 |
-
},
|
160 |
-
"Warranty Information": {
|
161 |
-
"Terms and Conditions": None,
|
162 |
-
"Service and repair information": None,
|
163 |
-
"Additional Details": None
|
164 |
-
},
|
165 |
-
"Legal Information": {
|
166 |
-
"Copyright information": None,
|
167 |
-
"Trademarks and patents": None,
|
168 |
-
"Disclaimers": None,
|
169 |
-
"Additional Details": None
|
170 |
-
|
171 |
-
}
|
172 |
-
}
|
173 |
-
|
174 |
-
for key,val in history.items():
|
175 |
-
|
176 |
-
find = details[key]
|
177 |
-
|
178 |
-
details[key] = str(detailed_feature_extraction(find,val))
|
179 |
-
|
180 |
-
return details
|
181 |
-
|
182 |
-
|
183 |
-
def get_embeddings(link,tag_option):
|
184 |
-
|
185 |
-
print(f"\nCreating Embeddings ----- {link}")
|
186 |
-
|
187 |
-
if tag_option=='
|
188 |
-
history = { "Details": "" }
|
189 |
-
|
190 |
-
else:
|
191 |
-
history = {
|
192 |
-
"Introduction": "",
|
193 |
-
"Specifications": "",
|
194 |
-
"Product Overview": "",
|
195 |
-
"Safety Information": "",
|
196 |
-
"Installation Instructions": "",
|
197 |
-
"Setup and Configuration": "",
|
198 |
-
"Operation Instructions": "",
|
199 |
-
"Maintenance and Care": "",
|
200 |
-
"Troubleshooting": "",
|
201 |
-
"Warranty Information": "",
|
202 |
-
"Legal Information": ""
|
203 |
-
}
|
204 |
-
|
205 |
-
# Extract Text -----------------------------
|
206 |
-
print("Extracting Text")
|
207 |
-
if link[-3:] == '.md' or link[8:11] == 'en.':
|
208 |
-
text = web_extractor(link)
|
209 |
-
else:
|
210 |
-
text = pdf_extractor(link)
|
211 |
-
|
212 |
-
# Create Chunks ----------------------------
|
213 |
-
print("Writing Tag Data")
|
214 |
-
|
215 |
-
if tag_option=="
|
216 |
-
history["Details"] = feature_extraction("Details", history["Details"], text[0][:50000])
|
217 |
-
|
218 |
-
else:
|
219 |
-
chunks = text_splitter.create_documents(text)
|
220 |
-
|
221 |
-
for chunk in chunks:
|
222 |
-
|
223 |
-
with concurrent.futures.ThreadPoolExecutor() as executor:
|
224 |
-
future_to_key = {
|
225 |
-
executor.submit(
|
226 |
-
feature_extraction, f"Product {key}", history[key], chunk.page_content
|
227 |
-
): key for key in history
|
228 |
-
}
|
229 |
-
for future in concurrent.futures.as_completed(future_to_key):
|
230 |
-
key = future_to_key[future]
|
231 |
-
try:
|
232 |
-
response = future.result()
|
233 |
-
history[key] = response
|
234 |
-
except Exception as e:
|
235 |
-
print(f"Error processing {key}: {e}")
|
236 |
-
|
237 |
-
print("Creating Vectors")
|
238 |
-
genai_embeddings=[]
|
239 |
-
|
240 |
-
for tag in history:
|
241 |
-
result = genai.embed_content(
|
242 |
-
model="models/embedding-001",
|
243 |
-
content=history[tag],
|
244 |
-
task_type="retrieval_document")
|
245 |
-
genai_embeddings.append(result['embedding'])
|
246 |
-
|
247 |
-
|
248 |
-
return history,genai_embeddings
|
249 |
-
|
250 |
-
global text_splitter
|
251 |
-
global data
|
252 |
-
global history
|
253 |
-
|
254 |
-
|
255 |
-
text_splitter = RecursiveCharacterTextSplitter(
|
256 |
-
chunk_size = 10000,
|
257 |
-
chunk_overlap = 100,
|
258 |
-
separators = ["",''," "]
|
259 |
-
)
|
260 |
-
|
261 |
-
if __name__ == '__main__':
|
262 |
-
# print(get_embeddings('https://www.galaxys24manual.com/wp-content/uploads/pdf/galaxy-s24-manual-SAM-S921-S926-S928-OS14-011824-FINAL-US-English.pdf',"Single"))
|
263 |
pass
|
|
|
1 |
+
from PyPDF2 import PdfReader
|
2 |
+
import requests
|
3 |
+
import json
|
4 |
+
import os
|
5 |
+
import concurrent.futures
|
6 |
+
import random
|
7 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
8 |
+
from langchain_community.document_loaders import WebBaseLoader
|
9 |
+
from langchain_community.document_loaders import PyPDFLoader
|
10 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
11 |
+
import google.generativeai as genai
|
12 |
+
from io import BytesIO
|
13 |
+
|
14 |
+
|
15 |
+
|
16 |
+
gemini = ChatGoogleGenerativeAI(model="gemini-1.0-pro-001",google_api_key='AIzaSyBmZtXjJgp7yIAo9joNCZGSxK9PbGMcVaA',temperature = 0.1)
|
17 |
+
gemini1 = ChatGoogleGenerativeAI(model="gemini-1.0-pro-001",google_api_key='AIzaSyABsaDjPujPCBlz4LLxcXDX_bDA9uEL7Xc',temperature = 0.1)
|
18 |
+
gemini2 = ChatGoogleGenerativeAI(model="gemini-1.0-pro-001",google_api_key='AIzaSyBCIQgt1uK7-sJH5Afg5vUZ99EWkx5gSU0',temperature = 0.1)
|
19 |
+
gemini3 = ChatGoogleGenerativeAI(model="gemini-1.0-pro-001",google_api_key='AIzaSyBot9W5Q-BKQ66NAYRUmVeloXWEbXOXTmM',temperature = 0.1)
|
20 |
+
|
21 |
+
genai.configure(api_key="AIzaSyBmZtXjJgp7yIAo9joNCZGSxK9PbGMcVaA")
|
22 |
+
|
23 |
+
|
24 |
+
def pdf_extractor(link):
|
25 |
+
text = ''
|
26 |
+
|
27 |
+
try:
|
28 |
+
# Fetch the PDF file from the URL
|
29 |
+
response = requests.get(link)
|
30 |
+
response.raise_for_status() # Raise an error for bad status codes
|
31 |
+
|
32 |
+
# Use BytesIO to handle the PDF content in memory
|
33 |
+
pdf_file = BytesIO(response.content)
|
34 |
+
|
35 |
+
# Load the PDF file
|
36 |
+
reader = PdfReader(pdf_file)
|
37 |
+
for page in reader.pages:
|
38 |
+
text += page.extract_text() # Extract text from each page
|
39 |
+
|
40 |
+
except requests.exceptions.HTTPError as e:
|
41 |
+
print(f'HTTP error occurred: {e}')
|
42 |
+
except Exception as e:
|
43 |
+
print(f'An error occurred: {e}')
|
44 |
+
|
45 |
+
return [text]
|
46 |
+
|
47 |
+
def web_extractor(link):
|
48 |
+
text = ''
|
49 |
+
|
50 |
+
try:
|
51 |
+
loader = WebBaseLoader(link)
|
52 |
+
pages = loader.load_and_split()
|
53 |
+
|
54 |
+
for page in pages:
|
55 |
+
text+=page.page_content
|
56 |
+
except:
|
57 |
+
pass
|
58 |
+
|
59 |
+
return [text]
|
60 |
+
|
61 |
+
|
62 |
+
def feature_extraction(tag, history , context):
|
63 |
+
|
64 |
+
prompt = f'''
|
65 |
+
You are an intelligent assistant tasked with updating product information. You have two data sources:
|
66 |
+
1. Tag_History: Previously gathered information about the product.
|
67 |
+
2. Tag_Context: New data that might contain additional details.
|
68 |
+
Your job is to read the Tag_Context and update the relevant field in the Tag_History with any new details found. The field to be updated is the {tag} FIELD.
|
69 |
+
Guidelines:
|
70 |
+
- Only add new details that are relevant to the {tag} FIELD.
|
71 |
+
- Do not add or modify any other fields in the Tag_History.
|
72 |
+
- Ensure your response is in coherent sentences, integrating the new details seamlessly into the existing information.
|
73 |
+
Here is the data:
|
74 |
+
Tag_Context: {str(context)}
|
75 |
+
Tag_History: {history}
|
76 |
+
Respond with the updated Tag_History.
|
77 |
+
'''
|
78 |
+
|
79 |
+
# model = random.choice([gemini,gemini1,gemini2,gemini3])
|
80 |
+
result = gemini1.invoke(prompt)
|
81 |
+
|
82 |
+
return result.content
|
83 |
+
|
84 |
+
def detailed_feature_extraction(find, context):
|
85 |
+
|
86 |
+
prompt = f'''
|
87 |
+
You are an intelligent assistant tasked with finding product information. You have one data source and one output format:
|
88 |
+
1. Context: The gathered information about the product.
|
89 |
+
2. Format: Details which need to be filled based on Context.
|
90 |
+
Your job is to read the Context and update the relevant field in Format using Context.
|
91 |
+
Guidelines:
|
92 |
+
- Only add details that are relevant to the individual FIELD.
|
93 |
+
- Do not add or modify any other fields in the Format.
|
94 |
+
- If nothing found return None.
|
95 |
+
Here is the data:
|
96 |
+
The Context is {str(context)}
|
97 |
+
The Format is {str(find)}
|
98 |
+
'''
|
99 |
+
|
100 |
+
model = random.choice([gemini,gemini1,gemini2,gemini3])
|
101 |
+
result = model.invoke(prompt)
|
102 |
+
|
103 |
+
return result.content
|
104 |
+
|
105 |
+
def detailed_history(history):
|
106 |
+
|
107 |
+
details = {
|
108 |
+
"Introduction": {
|
109 |
+
"Product Name": None,
|
110 |
+
"Overview of the product": None,
|
111 |
+
"Purpose of the manual": None,
|
112 |
+
"Audience": None,
|
113 |
+
"Additional Details": None
|
114 |
+
},
|
115 |
+
"Specifications": {
|
116 |
+
"Technical specifications": None,
|
117 |
+
"Performance metrics": None,
|
118 |
+
"Additional Details": None
|
119 |
+
},
|
120 |
+
"Product Overview": {
|
121 |
+
"Product features": None,
|
122 |
+
"Key components and parts": None,
|
123 |
+
"Additional Details": None
|
124 |
+
},
|
125 |
+
"Safety Information": {
|
126 |
+
"Safety warnings and precautions": None,
|
127 |
+
"Compliance and certification information": None,
|
128 |
+
"Additional Details": None
|
129 |
+
},
|
130 |
+
"Installation Instructions": {
|
131 |
+
"Unboxing and inventory checklist": None,
|
132 |
+
"Step-by-step installation guide": None,
|
133 |
+
"Required tools and materials": None,
|
134 |
+
"Additional Details": None
|
135 |
+
},
|
136 |
+
"Setup and Configuration": {
|
137 |
+
"Initial setup procedures": None,
|
138 |
+
"Configuration settings": None,
|
139 |
+
"Troubleshooting setup issues": None,
|
140 |
+
"Additional Details": None
|
141 |
+
},
|
142 |
+
"Operation Instructions": {
|
143 |
+
"How to use the product": None,
|
144 |
+
"Detailed instructions for different functionalities": None,
|
145 |
+
"User interface guide": None,
|
146 |
+
"Additional Details": None
|
147 |
+
},
|
148 |
+
"Maintenance and Care": {
|
149 |
+
"Cleaning instructions": None,
|
150 |
+
"Maintenance schedule": None,
|
151 |
+
"Replacement parts and accessories": None,
|
152 |
+
"Additional Details": None
|
153 |
+
},
|
154 |
+
"Troubleshooting": {
|
155 |
+
"Common issues and solutions": None,
|
156 |
+
"Error messages and their meanings": None,
|
157 |
+
"Support Information": None,
|
158 |
+
"Additional Details": None
|
159 |
+
},
|
160 |
+
"Warranty Information": {
|
161 |
+
"Terms and Conditions": None,
|
162 |
+
"Service and repair information": None,
|
163 |
+
"Additional Details": None
|
164 |
+
},
|
165 |
+
"Legal Information": {
|
166 |
+
"Copyright information": None,
|
167 |
+
"Trademarks and patents": None,
|
168 |
+
"Disclaimers": None,
|
169 |
+
"Additional Details": None
|
170 |
+
|
171 |
+
}
|
172 |
+
}
|
173 |
+
|
174 |
+
for key,val in history.items():
|
175 |
+
|
176 |
+
find = details[key]
|
177 |
+
|
178 |
+
details[key] = str(detailed_feature_extraction(find,val))
|
179 |
+
|
180 |
+
return details
|
181 |
+
|
182 |
+
|
183 |
+
def get_embeddings(link,tag_option):
|
184 |
+
|
185 |
+
print(f"\nCreating Embeddings ----- {link}")
|
186 |
+
|
187 |
+
if tag_option=='Complete Document Similarity':
|
188 |
+
history = { "Details": "" }
|
189 |
+
|
190 |
+
else:
|
191 |
+
history = {
|
192 |
+
"Introduction": "",
|
193 |
+
"Specifications": "",
|
194 |
+
"Product Overview": "",
|
195 |
+
"Safety Information": "",
|
196 |
+
"Installation Instructions": "",
|
197 |
+
"Setup and Configuration": "",
|
198 |
+
"Operation Instructions": "",
|
199 |
+
"Maintenance and Care": "",
|
200 |
+
"Troubleshooting": "",
|
201 |
+
"Warranty Information": "",
|
202 |
+
"Legal Information": ""
|
203 |
+
}
|
204 |
+
|
205 |
+
# Extract Text -----------------------------
|
206 |
+
print("Extracting Text")
|
207 |
+
if link[-3:] == '.md' or link[8:11] == 'en.':
|
208 |
+
text = web_extractor(link)
|
209 |
+
else:
|
210 |
+
text = pdf_extractor(link)
|
211 |
+
|
212 |
+
# Create Chunks ----------------------------
|
213 |
+
print("Writing Tag Data")
|
214 |
+
|
215 |
+
if tag_option=="Complete Document Similarity":
|
216 |
+
history["Details"] = feature_extraction("Details", history["Details"], text[0][:50000])
|
217 |
+
|
218 |
+
else:
|
219 |
+
chunks = text_splitter.create_documents(text)
|
220 |
+
|
221 |
+
for chunk in chunks:
|
222 |
+
|
223 |
+
with concurrent.futures.ThreadPoolExecutor() as executor:
|
224 |
+
future_to_key = {
|
225 |
+
executor.submit(
|
226 |
+
feature_extraction, f"Product {key}", history[key], chunk.page_content
|
227 |
+
): key for key in history
|
228 |
+
}
|
229 |
+
for future in concurrent.futures.as_completed(future_to_key):
|
230 |
+
key = future_to_key[future]
|
231 |
+
try:
|
232 |
+
response = future.result()
|
233 |
+
history[key] = response
|
234 |
+
except Exception as e:
|
235 |
+
print(f"Error processing {key}: {e}")
|
236 |
+
|
237 |
+
print("Creating Vectors")
|
238 |
+
genai_embeddings=[]
|
239 |
+
|
240 |
+
for tag in history:
|
241 |
+
result = genai.embed_content(
|
242 |
+
model="models/embedding-001",
|
243 |
+
content=history[tag],
|
244 |
+
task_type="retrieval_document")
|
245 |
+
genai_embeddings.append(result['embedding'])
|
246 |
+
|
247 |
+
|
248 |
+
return history,genai_embeddings
|
249 |
+
|
250 |
+
global text_splitter
|
251 |
+
global data
|
252 |
+
global history
|
253 |
+
|
254 |
+
|
255 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
256 |
+
chunk_size = 10000,
|
257 |
+
chunk_overlap = 100,
|
258 |
+
separators = ["",''," "]
|
259 |
+
)
|
260 |
+
|
261 |
+
if __name__ == '__main__':
|
262 |
+
# print(get_embeddings('https://www.galaxys24manual.com/wp-content/uploads/pdf/galaxy-s24-manual-SAM-S921-S926-S928-OS14-011824-FINAL-US-English.pdf',"Single"))
|
263 |
pass
|
infridgement_score.py
ADDED
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import concurrent.futures
|
3 |
+
from concurrent.futures import ThreadPoolExecutor,as_completed
|
4 |
+
from functools import partial
|
5 |
+
import numpy as np
|
6 |
+
from io import StringIO
|
7 |
+
import sys
|
8 |
+
import time
|
9 |
+
|
10 |
+
# File Imports
|
11 |
+
from embedding import get_embeddings # Ensure this file/module is available
|
12 |
+
from preprocess import filtering # Ensure this file/module is available
|
13 |
+
from search import *
|
14 |
+
|
15 |
+
# Cosine Similarity Function
|
16 |
+
def cosine_similarity(vec1, vec2):
|
17 |
+
vec1 = np.array(vec1)
|
18 |
+
vec2 = np.array(vec2)
|
19 |
+
|
20 |
+
dot_product = np.dot(vec1, vec2)
|
21 |
+
magnitude_vec1 = np.linalg.norm(vec1)
|
22 |
+
magnitude_vec2 = np.linalg.norm(vec2)
|
23 |
+
|
24 |
+
if magnitude_vec1 == 0 or magnitude_vec2 == 0:
|
25 |
+
return 0.0
|
26 |
+
|
27 |
+
cosine_sim = dot_product / (magnitude_vec1 * magnitude_vec2)
|
28 |
+
return cosine_sim
|
29 |
+
|
30 |
+
# Logger class to capture output
|
31 |
+
class StreamCapture:
|
32 |
+
def __init__(self):
|
33 |
+
self.output = StringIO()
|
34 |
+
self._stdout = sys.stdout
|
35 |
+
|
36 |
+
def __enter__(self):
|
37 |
+
sys.stdout = self.output
|
38 |
+
return self.output
|
39 |
+
|
40 |
+
def __exit__(self, exc_type, exc_val, exc_tb):
|
41 |
+
sys.stdout = self._stdout
|
42 |
+
|
43 |
+
# Main Function
|
44 |
+
def score(main_product, main_url, product_count, link_count, search, logger, log_area):
|
45 |
+
data = {}
|
46 |
+
similar_products = extract_similar_products(main_product)[:product_count]
|
47 |
+
|
48 |
+
if search == 'All':
|
49 |
+
|
50 |
+
def process_product(product, search_function, main_product):
|
51 |
+
search_result = search_function(product)
|
52 |
+
return filtering(search_result, main_product, product, link_count)
|
53 |
+
|
54 |
+
|
55 |
+
search_functions = {
|
56 |
+
'google': search_google,
|
57 |
+
'duckduckgo': search_duckduckgo,
|
58 |
+
# 'archive': search_archive,
|
59 |
+
'github': search_github,
|
60 |
+
'wikipedia': search_wikipedia
|
61 |
+
}
|
62 |
+
|
63 |
+
with ThreadPoolExecutor() as executor:
|
64 |
+
future_to_product_search = {
|
65 |
+
executor.submit(process_product, product, search_function, main_product): (product, search_name)
|
66 |
+
for product in similar_products
|
67 |
+
for search_name, search_function in search_functions.items()
|
68 |
+
}
|
69 |
+
|
70 |
+
for future in as_completed(future_to_product_search):
|
71 |
+
product, search_name = future_to_product_search[future]
|
72 |
+
try:
|
73 |
+
if product not in data:
|
74 |
+
data[product] = {}
|
75 |
+
data[product] = future.result()
|
76 |
+
except Exception as e:
|
77 |
+
print(f"Error processing product {product} with {search_name}: {e}")
|
78 |
+
|
79 |
+
else:
|
80 |
+
|
81 |
+
for product in similar_products:
|
82 |
+
|
83 |
+
if search == 'google':
|
84 |
+
data[product] = filtering(search_google(product), main_product, product, link_count)
|
85 |
+
elif search == 'duckduckgo':
|
86 |
+
data[product] = filtering(search_duckduckgo(product), main_product, product, link_count)
|
87 |
+
elif search == 'archive':
|
88 |
+
data[product] = filtering(search_archive(product), main_product, product, link_count)
|
89 |
+
elif search == 'github':
|
90 |
+
data[product] = filtering(search_github(product), main_product, product, link_count)
|
91 |
+
elif search == 'wikipedia':
|
92 |
+
data[product] = filtering(search_wikipedia(product), main_product, product, link_count)
|
93 |
+
|
94 |
+
logger.write("\n\nFiltered Links ------------------>\n")
|
95 |
+
logger.write(str(data) + "\n")
|
96 |
+
log_area.text(logger.getvalue())
|
97 |
+
|
98 |
+
logger.write("\n\nCreating Main product Embeddings ---------->\n")
|
99 |
+
main_result, main_embedding = get_embeddings(main_url,tag_option)
|
100 |
+
log_area.text(logger.getvalue())
|
101 |
+
|
102 |
+
print("main",main_embedding)
|
103 |
+
|
104 |
+
cosine_sim_scores = []
|
105 |
+
|
106 |
+
logger.write("\n\nCreating Similar product Embeddings ---------->\n")
|
107 |
+
log_area.text(logger.getvalue())
|
108 |
+
|
109 |
+
|
110 |
+
for product in data:
|
111 |
+
|
112 |
+
if len(data[product])==0:
|
113 |
+
logger.write("\n\nNo Product links Found Increase No of Links or Change Search Source\n")
|
114 |
+
log_area.text(logger.getvalue())
|
115 |
+
|
116 |
+
cosine_sim_scores.append((product,'No Product links Found Increase Number of Links or Change Search Source',None,None))
|
117 |
+
|
118 |
+
else:
|
119 |
+
for link in data[product][:link_count]:
|
120 |
+
|
121 |
+
similar_result, similar_embedding = get_embeddings(link,tag_option)
|
122 |
+
log_area.text(logger.getvalue())
|
123 |
+
|
124 |
+
print(similar_embedding)
|
125 |
+
for i in range(len(main_embedding)):
|
126 |
+
score = cosine_similarity(main_embedding[i], similar_embedding[i])
|
127 |
+
cosine_sim_scores.append((product, link, i, score))
|
128 |
+
log_area.text(logger.getvalue())
|
129 |
+
|
130 |
+
logger.write("--------------- DONE -----------------\n")
|
131 |
+
log_area.text(logger.getvalue())
|
132 |
+
return cosine_sim_scores, main_result
|
133 |
+
|
134 |
+
# Streamlit Interface
|
135 |
+
st.title("Check Infringement")
|
136 |
+
|
137 |
+
|
138 |
+
# Inputs
|
139 |
+
main_product = st.text_input('Enter Main Product Name', 'Philips led 7w bulb')
|
140 |
+
main_url = st.text_input('Enter Main Product Manual URL', 'https://www.assets.signify.com/is/content/PhilipsConsumer/PDFDownloads/Colombia/technical-sheets/ODLI20180227_001-UPD-es_CO-Ficha_Tecnica_LED_MR16_Master_7W_Dim_12V_CRI90.pdf')
|
141 |
+
search_method = st.selectbox('Choose Search Engine', ['All','duckduckgo', 'google', 'archive', 'github', 'wikipedia'])
|
142 |
+
|
143 |
+
col1, col2 = st.columns(2)
|
144 |
+
with col1:
|
145 |
+
product_count = st.number_input("Number of Simliar Products",min_value=1, step=1, format="%i")
|
146 |
+
with col2:
|
147 |
+
link_count = st.number_input("Number of Links per product",min_value=1, step=1, format="%i")
|
148 |
+
|
149 |
+
|
150 |
+
tag_option = st.selectbox('Choose Similarity Method', ["Complete Document Similarity","Feild Wise Document Similarity"])
|
151 |
+
|
152 |
+
|
153 |
+
if st.button('Check for Infringement'):
|
154 |
+
log_output = st.empty() # Placeholder for log output
|
155 |
+
|
156 |
+
with st.spinner('Processing...'):
|
157 |
+
with StreamCapture() as logger:
|
158 |
+
cosine_sim_scores, main_result = score(main_product, main_url,product_count, link_count, search_method, logger, log_output)
|
159 |
+
|
160 |
+
st.success('Processing complete!')
|
161 |
+
|
162 |
+
st.subheader("Cosine Similarity Scores")
|
163 |
+
|
164 |
+
# = score(main_product, main_url, search, logger, log_output)
|
165 |
+
if tag_option == 'Complete Document Similarity':
|
166 |
+
tags = ['Details']
|
167 |
+
else:
|
168 |
+
tags = ['Introduction', 'Specifications', 'Product Overview', 'Safety Information', 'Installation Instructions', 'Setup and Configuration', 'Operation Instructions', 'Maintenance and Care', 'Troubleshooting', 'Warranty Information', 'Legal Information']
|
169 |
+
|
170 |
+
for product, link, index, value in cosine_sim_scores:
|
171 |
+
if not index:
|
172 |
+
st.write(f"Product: {product}, Link: {link}")
|
173 |
+
if value!=None:
|
174 |
+
st.write(f"{tags[index]:<20} - Similarity: {value:.2f}")
|
preprocess.py
CHANGED
@@ -1,168 +1,184 @@
|
|
1 |
-
import requests
|
2 |
-
import json
|
3 |
-
import random
|
4 |
-
import concurrent.futures
|
5 |
-
from concurrent.futures import ThreadPoolExecutor
|
6 |
-
from langchain_community.document_loaders import PyPDFLoader
|
7 |
-
from langdetect import detect_langs
|
8 |
-
import requests
|
9 |
-
from PyPDF2 import PdfReader
|
10 |
-
from io import BytesIO
|
11 |
-
from langchain_community.document_loaders import WebBaseLoader
|
12 |
-
from langchain_google_genai import ChatGoogleGenerativeAI
|
13 |
-
import logging
|
14 |
-
|
15 |
-
data = False
|
16 |
-
seen = set()
|
17 |
-
|
18 |
-
# API Urls -----
|
19 |
-
|
20 |
-
# main_url = "http://127.0.0.1:5000/search/all"
|
21 |
-
main_url = "http://127.0.0.1:8000/search/all"
|
22 |
-
# main_product = "Samsung Galaxy s23 ultra"
|
23 |
-
|
24 |
-
# Revelevance Checking Models -----
|
25 |
-
gemini = ChatGoogleGenerativeAI(model="gemini-1.0-pro-001",google_api_key='AIzaSyBmZtXjJgp7yIAo9joNCZGSxK9PbGMcVaA',temperature = 0.1)
|
26 |
-
gemini1 = ChatGoogleGenerativeAI(model="gemini-1.0-pro-001",google_api_key='AIzaSyABsaDjPujPCBlz4LLxcXDX_bDA9uEL7Xc',temperature = 0.1)
|
27 |
-
gemini2 = ChatGoogleGenerativeAI(model="gemini-1.0-pro-001",google_api_key='AIzaSyBCIQgt1uK7-sJH5Afg5vUZ99EWkx5gSU0',temperature = 0.1)
|
28 |
-
gemini3 = ChatGoogleGenerativeAI(model="gemini-1.0-pro-001",google_api_key='AIzaSyBot9W5Q-BKQ66NAYRUmVeloXWEbXOXTmM',temperature = 0.1)
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
# Error Debug
|
35 |
-
logging.basicConfig(level=logging.INFO)
|
36 |
-
|
37 |
-
|
38 |
-
def get_links(main_product,api_key):
|
39 |
-
params = {
|
40 |
-
"API_KEY": f"{api_key}",
|
41 |
-
"product": f"{main_product}",
|
42 |
-
}
|
43 |
-
|
44 |
-
# Flask
|
45 |
-
response = requests.get(main_url, params=params)
|
46 |
-
|
47 |
-
# FastAPI
|
48 |
-
# response = requests.post(main_url, json=params)
|
49 |
-
|
50 |
-
|
51 |
-
if response.status_code == 200:
|
52 |
-
results = response.json()
|
53 |
-
with open('data.json', 'w') as f:
|
54 |
-
json.dump(results, f)
|
55 |
-
else:
|
56 |
-
print(f"Failed to fetch results: {response.status_code}")
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
def language_preprocess(text):
|
61 |
-
try:
|
62 |
-
if detect_langs(text)[0].lang == 'en':
|
63 |
-
return True
|
64 |
-
return False
|
65 |
-
except:
|
66 |
-
return False
|
67 |
-
|
68 |
-
|
69 |
-
def relevant(product, similar_product, content):
|
70 |
-
|
71 |
-
try:
|
72 |
-
payload = { "inputs": f'''Do you think that the given content is similar to {similar_product} and {product}, just Respond True or False \nContent for similar product: {content}'''}
|
73 |
-
|
74 |
-
# response = requests.post(API_URL, headers=headers, json=payload)
|
75 |
-
# output = response.json()
|
76 |
-
# return bool(output[0]['generated_text'])
|
77 |
-
|
78 |
-
model = random.choice([gemini,gemini1,gemini2,gemini3])
|
79 |
-
result = model.invoke(f'''Do you think that the given content is similar to {similar_product} and {product}, just Respond True or False \nContent for similar product: {content}''')
|
80 |
-
return bool(result)
|
81 |
-
|
82 |
-
except:
|
83 |
-
return False
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
def download_pdf(url, timeout=10):
|
88 |
-
try:
|
89 |
-
response = requests.get(url, timeout=timeout)
|
90 |
-
response.raise_for_status()
|
91 |
-
return BytesIO(response.content)
|
92 |
-
|
93 |
-
except requests.RequestException as e:
|
94 |
-
logging.error(f"PDF download error: {e}")
|
95 |
-
return None
|
96 |
-
|
97 |
-
def extract_text_from_pdf(pdf_file, pages):
|
98 |
-
reader = PdfReader(pdf_file)
|
99 |
-
extracted_text = ""
|
100 |
-
|
101 |
-
l = len(reader.pages)
|
102 |
-
|
103 |
-
try:
|
104 |
-
for page_num in pages:
|
105 |
-
if page_num < l:
|
106 |
-
page = reader.pages[page_num]
|
107 |
-
extracted_text += page.extract_text() + "\n"
|
108 |
-
else:
|
109 |
-
print(f"Page {page_num} does not exist in the document.")
|
110 |
-
|
111 |
-
return extracted_text
|
112 |
-
|
113 |
-
except:
|
114 |
-
return 'हे चालत नाही'
|
115 |
-
|
116 |
-
def extract_text_online(link):
|
117 |
-
|
118 |
-
loader = WebBaseLoader(link)
|
119 |
-
pages = loader.load_and_split()
|
120 |
-
|
121 |
-
text = ''
|
122 |
-
|
123 |
-
for page in pages[:3]:
|
124 |
-
text+=page.page_content
|
125 |
-
|
126 |
-
return text
|
127 |
-
|
128 |
-
|
129 |
-
def process_link(link, main_product, similar_product):
|
130 |
-
if link in seen:
|
131 |
-
return None
|
132 |
-
seen.add(link)
|
133 |
-
try:
|
134 |
-
if link[-3:]=='.md' or link[8:11] == 'en.':
|
135 |
-
text = extract_text_online(link)
|
136 |
-
else:
|
137 |
-
pdf_file = download_pdf(link)
|
138 |
-
text = extract_text_from_pdf(pdf_file, [0, 2, 4])
|
139 |
-
|
140 |
-
if language_preprocess(text):
|
141 |
-
if relevant(main_product, similar_product, text):
|
142 |
-
print("Accepted",link)
|
143 |
-
return link
|
144 |
-
except:
|
145 |
-
pass
|
146 |
-
print("NOT Accepted",link)
|
147 |
-
return None
|
148 |
-
|
149 |
-
def filtering(urls, main_product, similar_product):
|
150 |
-
res = []
|
151 |
-
|
152 |
-
print(f"Filtering Links of ---- {similar_product}")
|
153 |
-
# Main Preprocess ------------------------------
|
154 |
-
with ThreadPoolExecutor() as executor:
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
return res
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
import json
|
3 |
+
import random
|
4 |
+
import concurrent.futures
|
5 |
+
from concurrent.futures import ThreadPoolExecutor
|
6 |
+
from langchain_community.document_loaders import PyPDFLoader
|
7 |
+
from langdetect import detect_langs
|
8 |
+
import requests
|
9 |
+
from PyPDF2 import PdfReader
|
10 |
+
from io import BytesIO
|
11 |
+
from langchain_community.document_loaders import WebBaseLoader
|
12 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
13 |
+
import logging
|
14 |
+
|
15 |
+
data = False
|
16 |
+
seen = set()
|
17 |
+
|
18 |
+
# API Urls -----
|
19 |
+
|
20 |
+
# main_url = "http://127.0.0.1:5000/search/all"
|
21 |
+
main_url = "http://127.0.0.1:8000/search/all"
|
22 |
+
# main_product = "Samsung Galaxy s23 ultra"
|
23 |
+
|
24 |
+
# Revelevance Checking Models -----
|
25 |
+
gemini = ChatGoogleGenerativeAI(model="gemini-1.0-pro-001",google_api_key='AIzaSyBmZtXjJgp7yIAo9joNCZGSxK9PbGMcVaA',temperature = 0.1)
|
26 |
+
gemini1 = ChatGoogleGenerativeAI(model="gemini-1.0-pro-001",google_api_key='AIzaSyABsaDjPujPCBlz4LLxcXDX_bDA9uEL7Xc',temperature = 0.1)
|
27 |
+
gemini2 = ChatGoogleGenerativeAI(model="gemini-1.0-pro-001",google_api_key='AIzaSyBCIQgt1uK7-sJH5Afg5vUZ99EWkx5gSU0',temperature = 0.1)
|
28 |
+
gemini3 = ChatGoogleGenerativeAI(model="gemini-1.0-pro-001",google_api_key='AIzaSyBot9W5Q-BKQ66NAYRUmVeloXWEbXOXTmM',temperature = 0.1)
|
29 |
+
|
30 |
+
|
31 |
+
API_URL = "https://api-inference.huggingface.co/models/google/flan-t5-xxl"
|
32 |
+
headers = {"Authorization": "Bearer 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"}
|
33 |
+
|
34 |
+
# Error Debug
|
35 |
+
logging.basicConfig(level=logging.INFO)
|
36 |
+
|
37 |
+
|
38 |
+
def get_links(main_product,api_key):
|
39 |
+
params = {
|
40 |
+
"API_KEY": f"{api_key}",
|
41 |
+
"product": f"{main_product}",
|
42 |
+
}
|
43 |
+
|
44 |
+
# Flask
|
45 |
+
response = requests.get(main_url, params=params)
|
46 |
+
|
47 |
+
# FastAPI
|
48 |
+
# response = requests.post(main_url, json=params)
|
49 |
+
|
50 |
+
|
51 |
+
if response.status_code == 200:
|
52 |
+
results = response.json()
|
53 |
+
with open('data.json', 'w') as f:
|
54 |
+
json.dump(results, f)
|
55 |
+
else:
|
56 |
+
print(f"Failed to fetch results: {response.status_code}")
|
57 |
+
|
58 |
+
|
59 |
+
|
60 |
+
def language_preprocess(text):
|
61 |
+
try:
|
62 |
+
if detect_langs(text)[0].lang == 'en':
|
63 |
+
return True
|
64 |
+
return False
|
65 |
+
except:
|
66 |
+
return False
|
67 |
+
|
68 |
+
|
69 |
+
def relevant(product, similar_product, content):
|
70 |
+
|
71 |
+
try:
|
72 |
+
payload = { "inputs": f'''Do you think that the given content is similar to {similar_product} and {product}, just Respond True or False \nContent for similar product: {content}'''}
|
73 |
+
|
74 |
+
# response = requests.post(API_URL, headers=headers, json=payload)
|
75 |
+
# output = response.json()
|
76 |
+
# return bool(output[0]['generated_text'])
|
77 |
+
|
78 |
+
model = random.choice([gemini,gemini1,gemini2,gemini3])
|
79 |
+
result = model.invoke(f'''Do you think that the given content is similar to {similar_product} and {product}, just Respond True or False \nContent for similar product: {content}''')
|
80 |
+
return bool(result)
|
81 |
+
|
82 |
+
except:
|
83 |
+
return False
|
84 |
+
|
85 |
+
|
86 |
+
|
87 |
+
def download_pdf(url, timeout=10):
|
88 |
+
try:
|
89 |
+
response = requests.get(url, timeout=timeout)
|
90 |
+
response.raise_for_status()
|
91 |
+
return BytesIO(response.content)
|
92 |
+
|
93 |
+
except requests.RequestException as e:
|
94 |
+
logging.error(f"PDF download error: {e}")
|
95 |
+
return None
|
96 |
+
|
97 |
+
def extract_text_from_pdf(pdf_file, pages):
|
98 |
+
reader = PdfReader(pdf_file)
|
99 |
+
extracted_text = ""
|
100 |
+
|
101 |
+
l = len(reader.pages)
|
102 |
+
|
103 |
+
try:
|
104 |
+
for page_num in pages:
|
105 |
+
if page_num < l:
|
106 |
+
page = reader.pages[page_num]
|
107 |
+
extracted_text += page.extract_text() + "\n"
|
108 |
+
else:
|
109 |
+
print(f"Page {page_num} does not exist in the document.")
|
110 |
+
|
111 |
+
return extracted_text
|
112 |
+
|
113 |
+
except:
|
114 |
+
return 'हे चालत नाही'
|
115 |
+
|
116 |
+
def extract_text_online(link):
|
117 |
+
|
118 |
+
loader = WebBaseLoader(link)
|
119 |
+
pages = loader.load_and_split()
|
120 |
+
|
121 |
+
text = ''
|
122 |
+
|
123 |
+
for page in pages[:3]:
|
124 |
+
text+=page.page_content
|
125 |
+
|
126 |
+
return text
|
127 |
+
|
128 |
+
|
129 |
+
def process_link(link, main_product, similar_product):
|
130 |
+
if link in seen:
|
131 |
+
return None
|
132 |
+
seen.add(link)
|
133 |
+
try:
|
134 |
+
if link[-3:]=='.md' or link[8:11] == 'en.':
|
135 |
+
text = extract_text_online(link)
|
136 |
+
else:
|
137 |
+
pdf_file = download_pdf(link)
|
138 |
+
text = extract_text_from_pdf(pdf_file, [0, 2, 4])
|
139 |
+
|
140 |
+
if language_preprocess(text):
|
141 |
+
if relevant(main_product, similar_product, text):
|
142 |
+
print("Accepted",link)
|
143 |
+
return link
|
144 |
+
except:
|
145 |
+
pass
|
146 |
+
print("NOT Accepted",link)
|
147 |
+
return None
|
148 |
+
|
149 |
+
def filtering(urls, main_product, similar_product, link_count):
|
150 |
+
res = []
|
151 |
+
|
152 |
+
# print(f"Filtering Links of ---- {similar_product}")
|
153 |
+
# Main Preprocess ------------------------------
|
154 |
+
# with ThreadPoolExecutor() as executor:
|
155 |
+
# futures = {executor.submit(process_link, link, main_product, similar_product): link for link in urls}
|
156 |
+
# for future in concurrent.futures.as_completed(futures):
|
157 |
+
# result = future.result()
|
158 |
+
# if result is not None:
|
159 |
+
# res.append(result)
|
160 |
+
|
161 |
+
# return res
|
162 |
+
|
163 |
+
count = 0
|
164 |
+
|
165 |
+
print(f"Filtering Links of ---- {similar_product}")
|
166 |
+
|
167 |
+
for link in urls:
|
168 |
+
result = process_link(link, main_product, similar_product)
|
169 |
+
|
170 |
+
if result is not None:
|
171 |
+
res.append(result)
|
172 |
+
count += 1
|
173 |
+
|
174 |
+
if count == link_count:
|
175 |
+
break
|
176 |
+
|
177 |
+
return res
|
178 |
+
|
179 |
+
|
180 |
+
# Main Functions -------------------------------------------------->
|
181 |
+
|
182 |
+
# get_links()
|
183 |
+
# preprocess()
|
184 |
+
|