Spaces:
Sleeping
Sleeping
Update resume_ranker.py
Browse files- resume_ranker.py +96 -96
resume_ranker.py
CHANGED
@@ -1,97 +1,97 @@
|
|
1 |
-
from crewai import Agent, Task, Crew
|
2 |
-
from langchain_groq import ChatGroq
|
3 |
-
from langchain_community.document_loaders import RecursiveUrlLoader
|
4 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
5 |
-
from langchain_community.vectorstores import FAISS
|
6 |
-
from langchain_community.embeddings import HuggingFaceEmbeddings
|
7 |
-
from googlesearch import search
|
8 |
-
from PyPDF2 import PdfReader
|
9 |
-
from dotenv import load_dotenv
|
10 |
-
import os
|
11 |
-
import logging
|
12 |
-
from bs4 import BeautifulSoup
|
13 |
-
import re
|
14 |
-
load_dotenv()
|
15 |
-
logging.basicConfig(filename="
|
16 |
-
|
17 |
-
llm = ChatGroq(
|
18 |
-
api_key=os.getenv("GROQ_API_KEY"),
|
19 |
-
model="llama3-70b-8192",
|
20 |
-
temperature=0.5,
|
21 |
-
max_tokens=1000
|
22 |
-
)
|
23 |
-
|
24 |
-
resume_ranker = Agent(
|
25 |
-
role="Resume Ranker",
|
26 |
-
goal="Rank resumes based on job fit with fairness",
|
27 |
-
backstory="An expert in evaluating resumes fairly",
|
28 |
-
llm=llm,
|
29 |
-
verbose=True,
|
30 |
-
allow_delegation=False
|
31 |
-
)
|
32 |
-
def html_to_text(html_content: str) -> str:
|
33 |
-
soup = BeautifulSoup(html_content, 'html.parser')
|
34 |
-
|
35 |
-
# Extract text with proper spacing
|
36 |
-
text = soup.get_text(separator=" ").strip()
|
37 |
-
|
38 |
-
# Remove excessive multiple spaces
|
39 |
-
text = re.sub(r'\s+', ' ', text)
|
40 |
-
def extract_text_from_pdf(file_path=None, file_content=None):
|
41 |
-
if file_path:
|
42 |
-
reader = PdfReader(file_path)
|
43 |
-
elif file_content:
|
44 |
-
reader = PdfReader(file_content)
|
45 |
-
text = ""
|
46 |
-
for page in reader.pages:
|
47 |
-
text += page.extract_text() or ""
|
48 |
-
return text
|
49 |
-
|
50 |
-
def fetch_related_content(job_description):
|
51 |
-
query = f"{job_description} site:*.edu | site:*.org | site:*.gov -inurl:(signup | login)"
|
52 |
-
urls = list(search(query, num_results=5))
|
53 |
-
documents = []
|
54 |
-
for url in urls:
|
55 |
-
try:
|
56 |
-
loader = RecursiveUrlLoader(url=url,extractor=html_to_text,max_depth=1,
|
57 |
-
headers={"User-Agent": "Mozilla/5.0"})
|
58 |
-
docs = loader.load()
|
59 |
-
documents.extend(docs)
|
60 |
-
except Exception as e:
|
61 |
-
logging.error(f"Error loading {url}: {e}")
|
62 |
-
return documents
|
63 |
-
|
64 |
-
def store_in_vdb(documents):
|
65 |
-
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
66 |
-
chunks = text_splitter.split_documents(documents)
|
67 |
-
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
68 |
-
return FAISS.from_documents(chunks, embeddings)
|
69 |
-
|
70 |
-
def process_resumes(job_description, dir_path=None, uploaded_files=None):
|
71 |
-
resumes = []
|
72 |
-
if dir_path and os.path.isdir(dir_path):
|
73 |
-
for filename in os.listdir(dir_path):
|
74 |
-
if filename.endswith(".pdf"):
|
75 |
-
file_path = os.path.join(dir_path, filename)
|
76 |
-
resume_text = extract_text_from_pdf(file_path=file_path)
|
77 |
-
resumes.append(f"Resume: {filename}\nContent: {resume_text}")
|
78 |
-
elif uploaded_files:
|
79 |
-
for uploaded_file in uploaded_files:
|
80 |
-
resume_text = extract_text_from_pdf(file_content=uploaded_file)
|
81 |
-
resumes.append(f"Resume: {uploaded_file.name}\nContent: {resume_text}")
|
82 |
-
return resumes
|
83 |
-
|
84 |
-
def create_resume_rank_task(job_description, dir_path=None, uploaded_files=None):
|
85 |
-
resumes = process_resumes(job_description, dir_path, uploaded_files)
|
86 |
-
if not resumes:
|
87 |
-
return None
|
88 |
-
documents = fetch_related_content(job_description)
|
89 |
-
vdb = store_in_vdb(documents) if documents else None
|
90 |
-
context = vdb.similarity_search(job_description, k=3) if vdb else []
|
91 |
-
context_text = "\n".join([doc.page_content for doc in context]) or "No context."
|
92 |
-
prompt = f"Rank these resumes: {', '.join(resumes)} for '{job_description}' using context: '{context_text}'. Ensure fairness by avoiding bias based on gender, age, or ethnicity. Flag any potential bias in reasoning."
|
93 |
-
return Task(
|
94 |
-
description=prompt,
|
95 |
-
agent=resume_ranker,
|
96 |
-
expected_output="A ranked list with scores (0-100), reasoning, and bias flags."
|
97 |
)
|
|
|
1 |
+
from crewai import Agent, Task, Crew
|
2 |
+
from langchain_groq import ChatGroq
|
3 |
+
from langchain_community.document_loaders import RecursiveUrlLoader
|
4 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
5 |
+
from langchain_community.vectorstores import FAISS
|
6 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
7 |
+
from googlesearch import search
|
8 |
+
from PyPDF2 import PdfReader
|
9 |
+
from dotenv import load_dotenv
|
10 |
+
import os
|
11 |
+
import logging
|
12 |
+
from bs4 import BeautifulSoup
|
13 |
+
import re
|
14 |
+
load_dotenv()
|
15 |
+
logging.basicConfig(filename="app.log", level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
16 |
+
|
17 |
+
llm = ChatGroq(
|
18 |
+
api_key=os.getenv("GROQ_API_KEY"),
|
19 |
+
model="llama3-70b-8192",
|
20 |
+
temperature=0.5,
|
21 |
+
max_tokens=1000
|
22 |
+
)
|
23 |
+
|
24 |
+
resume_ranker = Agent(
|
25 |
+
role="Resume Ranker",
|
26 |
+
goal="Rank resumes based on job fit with fairness",
|
27 |
+
backstory="An expert in evaluating resumes fairly",
|
28 |
+
llm=llm,
|
29 |
+
verbose=True,
|
30 |
+
allow_delegation=False
|
31 |
+
)
|
32 |
+
def html_to_text(html_content: str) -> str:
|
33 |
+
soup = BeautifulSoup(html_content, 'html.parser')
|
34 |
+
|
35 |
+
# Extract text with proper spacing
|
36 |
+
text = soup.get_text(separator=" ").strip()
|
37 |
+
|
38 |
+
# Remove excessive multiple spaces
|
39 |
+
text = re.sub(r'\s+', ' ', text)
|
40 |
+
def extract_text_from_pdf(file_path=None, file_content=None):
|
41 |
+
if file_path:
|
42 |
+
reader = PdfReader(file_path)
|
43 |
+
elif file_content:
|
44 |
+
reader = PdfReader(file_content)
|
45 |
+
text = ""
|
46 |
+
for page in reader.pages:
|
47 |
+
text += page.extract_text() or ""
|
48 |
+
return text
|
49 |
+
|
50 |
+
def fetch_related_content(job_description):
|
51 |
+
query = f"{job_description} site:*.edu | site:*.org | site:*.gov -inurl:(signup | login)"
|
52 |
+
urls = list(search(query, num_results=5))
|
53 |
+
documents = []
|
54 |
+
for url in urls:
|
55 |
+
try:
|
56 |
+
loader = RecursiveUrlLoader(url=url,extractor=html_to_text,max_depth=1,
|
57 |
+
headers={"User-Agent": "Mozilla/5.0"})
|
58 |
+
docs = loader.load()
|
59 |
+
documents.extend(docs)
|
60 |
+
except Exception as e:
|
61 |
+
logging.error(f"Error loading {url}: {e}")
|
62 |
+
return documents
|
63 |
+
|
64 |
+
def store_in_vdb(documents):
|
65 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
66 |
+
chunks = text_splitter.split_documents(documents)
|
67 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
68 |
+
return FAISS.from_documents(chunks, embeddings)
|
69 |
+
|
70 |
+
def process_resumes(job_description, dir_path=None, uploaded_files=None):
|
71 |
+
resumes = []
|
72 |
+
if dir_path and os.path.isdir(dir_path):
|
73 |
+
for filename in os.listdir(dir_path):
|
74 |
+
if filename.endswith(".pdf"):
|
75 |
+
file_path = os.path.join(dir_path, filename)
|
76 |
+
resume_text = extract_text_from_pdf(file_path=file_path)
|
77 |
+
resumes.append(f"Resume: {filename}\nContent: {resume_text}")
|
78 |
+
elif uploaded_files:
|
79 |
+
for uploaded_file in uploaded_files:
|
80 |
+
resume_text = extract_text_from_pdf(file_content=uploaded_file)
|
81 |
+
resumes.append(f"Resume: {uploaded_file.name}\nContent: {resume_text}")
|
82 |
+
return resumes
|
83 |
+
|
84 |
+
def create_resume_rank_task(job_description, dir_path=None, uploaded_files=None):
|
85 |
+
resumes = process_resumes(job_description, dir_path, uploaded_files)
|
86 |
+
if not resumes:
|
87 |
+
return None
|
88 |
+
documents = fetch_related_content(job_description)
|
89 |
+
vdb = store_in_vdb(documents) if documents else None
|
90 |
+
context = vdb.similarity_search(job_description, k=3) if vdb else []
|
91 |
+
context_text = "\n".join([doc.page_content for doc in context]) or "No context."
|
92 |
+
prompt = f"Rank these resumes: {', '.join(resumes)} for '{job_description}' using context: '{context_text}'. Ensure fairness by avoiding bias based on gender, age, or ethnicity. Flag any potential bias in reasoning."
|
93 |
+
return Task(
|
94 |
+
description=prompt,
|
95 |
+
agent=resume_ranker,
|
96 |
+
expected_output="A ranked list with scores (0-100), reasoning, and bias flags."
|
97 |
)
|