Update app.py
Browse files
app.py
CHANGED
@@ -24,46 +24,33 @@ remote_ratio_dict = {'0':1,
|
|
24 |
model = joblib.load('model.joblib')
|
25 |
unique_values = joblib.load('unique_values.joblib')
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
unique_sex = unique_values["sex"]
|
33 |
-
unique_race = unique_values["race"]
|
34 |
-
unique_native_country = unique_values["native.country"]
|
35 |
|
36 |
def main():
|
37 |
-
st.title("
|
38 |
|
39 |
with st.form("questionaire"):
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
relationship = st.selectbox("Relationship", options=unique_relationship)
|
46 |
-
race = st.selectbox("Race", options=unique_race)
|
47 |
-
sex = st.selectbox("Sex", options=unique_sex)
|
48 |
-
hours_per_week = st.slider("Hours per week", min_value = 10, max_value = 100)
|
49 |
-
native_country = st.selectbox("Native country", options=unique_native_country)
|
50 |
|
51 |
# clicked==True only when the button is clicked
|
52 |
-
clicked = st.form_submit_button("Predict
|
53 |
if clicked:
|
54 |
-
result=model.predict(pd.DataFrame({"
|
55 |
-
"
|
56 |
-
"
|
57 |
-
"
|
58 |
-
"
|
59 |
-
"relationship": [relationship],
|
60 |
-
"race": [race],
|
61 |
-
"sex": [sex],
|
62 |
-
"hours.per.week": [hours_per_week],
|
63 |
-
"native.country": [native_country]}))
|
64 |
# Show prediction
|
65 |
-
|
66 |
-
st.success("Your predicted
|
67 |
|
68 |
if __name__ == "__main__":
|
69 |
main()
|
|
|
24 |
model = joblib.load('model.joblib')
|
25 |
unique_values = joblib.load('unique_values.joblib')
|
26 |
|
27 |
+
unique_experience_level = unique_values["experience_level"]
|
28 |
+
unique_employment_type = unique_values["employment_type"]
|
29 |
+
unique_job_title = unique_values["job_title"]
|
30 |
+
unique_remote_ratio = unique_values["remote_ratio"]
|
31 |
+
unique_company_size = unique_values["company_size"]
|
|
|
|
|
|
|
32 |
|
33 |
def main():
|
34 |
+
st.title("Data Science Job Salaries")
|
35 |
|
36 |
with st.form("questionaire"):
|
37 |
+
experience_level = st.selectbox("The experience level in the job", options = unique_experience_level)
|
38 |
+
employment_type = st.selectbox("The type of employement for the role", options=unique_employment_type)
|
39 |
+
job_title = st.selectbox("The role worked", options=unique_job_title)
|
40 |
+
remote_ratio = st.selectbox("The overall amount of work done remotely", options=unique_remote_ratio)
|
41 |
+
company_size = st.selectbox("The average number of people that worked for the company", options=unique_company_size)
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
# clicked==True only when the button is clicked
|
44 |
+
clicked = st.form_submit_button("Predict Data Science Job Salaries")
|
45 |
if clicked:
|
46 |
+
result=model.predict(pd.DataFrame({"experience_level": [Experience_DICT[experience_level],
|
47 |
+
"employment_type": [employment_type_dict[employment_type]],
|
48 |
+
"job_title": [job_title],
|
49 |
+
"remote_ratio": [remote_ratio],
|
50 |
+
"company_size": [Company_size[company_size]]}))
|
|
|
|
|
|
|
|
|
|
|
51 |
# Show prediction
|
52 |
+
salary_in_usd = str(round(float(result),2))
|
53 |
+
st.success("Your predicted Data Science job salaries in usd is " +result)
|
54 |
|
55 |
if __name__ == "__main__":
|
56 |
main()
|