import gradio as gr
import torch
import modin.pandas as pd
from diffusers import DiffusionPipeline
device = "cuda" if torch.cuda.is_available() else "cpu"
if torch.cuda.is_available():
PYTORCH_CUDA_ALLOC_CONF={'max_split_size_mb': 6000}
torch.cuda.max_memory_allocated(device=device)
torch.cuda.empty_cache()
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
pipe.enable_xformers_memory_efficient_attention()
pipe = pipe.to(device)
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
torch.cuda.empty_cache()
refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16")
refiner.enable_xformers_memory_efficient_attention()
refiner.enable_sequential_cpu_offload()
refiner.unet = torch.compile(refiner.unet, mode="reduce-overhead", fullgraph=True)
else:
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", use_safetensors=True)
pipe = pipe.to(device)
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True)
refiner = refiner.to(device)
refiner.unet = torch.compile(refiner.unet, mode="reduce-overhead", fullgraph=True)
def genie (prompt, negative_prompt, height, width, scale, steps, seed, prompt_2, negative_prompt_2, high_noise_frac):
generator = np.random.seed(0) if seed == 0 else torch.manual_seed(seed)
int_image = pipe(prompt, prompt_2=prompt_2, negative_prompt_2=negative_prompt_2, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale, num_images_per_prompt=1, generator=generator, output_type="latent").images
image = refiner(prompt=prompt, prompt_2=prompt_2, negative_prompt=negative_prompt, negative_prompt_2=negative_prompt_2, image=int_image, denoising_start=high_noise_frac).images[0]
return image
gr.Interface(fn=genie, inputs=[gr.Textbox(label='What you want the AI to generate. 77 Token Limit.'),
gr.Textbox(label='What you Do Not want the AI to generate.'),
gr.Slider(512, 1024, 768, step=128, label='Height'),
gr.Slider(512, 1024, 768, step=128, label='Width'),
gr.Slider(1, 15, 10, label='Guidance Scale'),
gr.Slider(25, maximum=50, value=25, step=1, label='Number of Iterations'),
gr.Slider(minimum=1, step=1, maximum=999999999999999999, randomize=True),
gr.Textbox(label='Embedded Prompt'),
gr.Textbox(label='Embedded Negative Prompt'),
gr.Slider(minimum=.7, maximum=.99, value=.95, step=.01, label='Refiner Denoise Start %')],
outputs='image',
title="Stable Diffusion XL 1.0 CPU or GPU",
description="SDXL 1.0 CPU or GPU. Currently running on CPU.
WARNING: Extremely Slow. 65s/Iteration. Expect 25-50mins an image for 25-50 iterations respectively. This model is capable of producing NSFW (Softcore) images.",
article = "If You Enjoyed this Demo and would like to Donate, you can send to any of these Wallets.
BTC: bc1qzdm9j73mj8ucwwtsjx4x4ylyfvr6kp7svzjn84
3LWRoKYx6bCLnUrKEdnPo3FCSPQUSFDjFP
DOGE: DK6LRc4gfefdCTRk9xPD239N31jh9GjKez
SHIB (BEP20): 0xbE8f2f3B71DFEB84E5F7E3aae1909d60658aB891
PayPal: https://www.paypal.me/ManjushriBodhisattva
ETH: 0xbE8f2f3B71DFEB84E5F7E3aae1909d60658aB891
Code Monkey: Manjushri").launch(debug=True, max_threads=80)