Readding documents necessary for Streamlit Document
Browse files- .gitignore +15 -0
- README.md +2 -2
- main.py +1 -0
- model_loader.py +37 -0
- modelling_cnn.py +126 -0
- my_model/config.json +1 -0
- my_model/pytorch_model.bin +3 -0
- requirements.txt +4 -0
- sent_model/config.json +1 -0
- sent_model/sent_pytorch_model.bin +3 -0
.gitignore
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Python
|
2 |
+
*.pyc
|
3 |
+
__pycache__/
|
4 |
+
venv/
|
5 |
+
*.env
|
6 |
+
|
7 |
+
# VS Code
|
8 |
+
.vscode/
|
9 |
+
.settings/
|
10 |
+
.cache/
|
11 |
+
|
12 |
+
# Other
|
13 |
+
*.log
|
14 |
+
*.swp
|
15 |
+
.DS_Store
|
README.md
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
---
|
2 |
title: YorubaCNN
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
colorTo: gray
|
6 |
sdk: streamlit
|
7 |
sdk_version: 1.37.1
|
|
|
1 |
---
|
2 |
title: YorubaCNN
|
3 |
+
emoji: π
|
4 |
+
colorFrom: green
|
5 |
colorTo: gray
|
6 |
sdk: streamlit
|
7 |
sdk_version: 1.37.1
|
main.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
print('Hello, Lightning World!')
|
model_loader.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from huggingface_hub import HfApi, HfFolder
|
2 |
+
import os
|
3 |
+
import os
|
4 |
+
from dotenv import load_dotenv
|
5 |
+
|
6 |
+
# Load environment variables from .env file if it exists
|
7 |
+
load_dotenv()
|
8 |
+
|
9 |
+
hf_token = os.getenv('HF_TOKEN')
|
10 |
+
api = HfApi()
|
11 |
+
|
12 |
+
# Specify the model details
|
13 |
+
model_id = "Testys/cnn_yor_ner"
|
14 |
+
sent_id = "Testys/cnn_sent_yor"
|
15 |
+
local_dir = "./my_model"
|
16 |
+
sent_dir = "./sent_model"
|
17 |
+
|
18 |
+
# Download the model folder
|
19 |
+
if not os.path.exists(local_dir):
|
20 |
+
os.makedirs(local_dir)
|
21 |
+
|
22 |
+
if not os.path.exists(os.path.join(local_dir, "pytorch_model.bin")):
|
23 |
+
api.hf_hub_download(repo_id=model_id, filename="pytorch_model.bin", local_dir=local_dir, use_auth_token=hf_token)
|
24 |
+
|
25 |
+
if not os.path.exists(os.path.join(local_dir, "config.json")):
|
26 |
+
api.hf_hub_download(repo_id=model_id, filename="config.json", local_dir=local_dir, use_auth_token=hf_token)
|
27 |
+
|
28 |
+
|
29 |
+
# Check if the model is already downloaded
|
30 |
+
if not os.path.exists(sent_dir):
|
31 |
+
os.makedirs(sent_dir)
|
32 |
+
|
33 |
+
# Download the model files only if they don't exist
|
34 |
+
if not os.path.exists(os.path.join(sent_dir, "sent_pytorch_model.bin")):
|
35 |
+
api.hf_hub_download(repo_id=sent_id, filename="sent_pytorch_model.bin", local_dir=sent_dir, use_auth_token=hf_token)
|
36 |
+
if not os.path.exists(os.path.join(sent_dir, "config.json")):
|
37 |
+
api.hf_hub_download(repo_id=sent_id, filename="config.json", local_dir=sent_dir, use_auth_token=hf_token)
|
modelling_cnn.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch.nn.functional as F
|
6 |
+
from transformers import pipeline
|
7 |
+
from huggingface_hub import HfApi, HfFolder
|
8 |
+
from transformers import AutoTokenizer, AutoConfig, AutoModelForTokenClassification, AutoModel
|
9 |
+
|
10 |
+
|
11 |
+
class CNNForNER(nn.Module):
|
12 |
+
def __init__(self, pretrained_model_name, num_classes, max_length=128):
|
13 |
+
super(CNNForNER, self).__init__()
|
14 |
+
self.transformer = AutoModelForTokenClassification.from_pretrained(pretrained_model_name)
|
15 |
+
self.max_length = max_length
|
16 |
+
|
17 |
+
# Get the number of labels from the pretrained model
|
18 |
+
pretrained_num_labels = self.transformer.num_labels
|
19 |
+
|
20 |
+
self.conv1 = nn.Conv1d(in_channels=pretrained_num_labels, out_channels=256, kernel_size=3, padding=1)
|
21 |
+
self.conv2 = nn.Conv1d(in_channels=256, out_channels=128, kernel_size=3, padding=1)
|
22 |
+
self.dropout = nn.Dropout(0.3)
|
23 |
+
self.fc = nn.Linear(in_features=128, out_features=num_classes)
|
24 |
+
|
25 |
+
def forward(self, input_ids, attention_mask):
|
26 |
+
outputs = self.transformer(input_ids=input_ids, attention_mask=attention_mask)
|
27 |
+
logits = outputs.logits # Shape: (batch_size, sequence_length, pretrained_num_labels)
|
28 |
+
|
29 |
+
# Apply CNN layers
|
30 |
+
logits = logits.permute(0, 2, 1) # Shape: (batch_size, pretrained_num_labels, sequence_length)
|
31 |
+
conv1_out = F.relu(self.conv1(logits))
|
32 |
+
conv2_out = F.relu(self.conv2(conv1_out))
|
33 |
+
conv2_out = self.dropout(conv2_out)
|
34 |
+
conv2_out = conv2_out.permute(0, 2, 1) # Shape: (batch_size, sequence_length, 128)
|
35 |
+
final_logits = self.fc(conv2_out) # Shape: (batch_size, sequence_length, num_classes)
|
36 |
+
return final_logits
|
37 |
+
|
38 |
+
|
39 |
+
|
40 |
+
import torch
|
41 |
+
import torch.nn as nn
|
42 |
+
import torch.nn.functional as F
|
43 |
+
from transformers import AutoModel
|
44 |
+
|
45 |
+
class SentimentCNNModel(nn.Module):
|
46 |
+
def __init__(self, transformer_model_name, num_classes, cnn_out_channels=100, cnn_kernel_sizes=[3, 5, 7]):
|
47 |
+
super(SentimentCNNModel, self).__init__()
|
48 |
+
# Load pre-trained transformer model
|
49 |
+
self.transformer = AutoModel.from_pretrained(transformer_model_name)
|
50 |
+
|
51 |
+
# CNN layers with multiple kernel sizes
|
52 |
+
self.convs = nn.ModuleList([
|
53 |
+
nn.Conv1d(in_channels=self.transformer.config.hidden_size,
|
54 |
+
out_channels=cnn_out_channels,
|
55 |
+
kernel_size=k)
|
56 |
+
for k in cnn_kernel_sizes
|
57 |
+
])
|
58 |
+
|
59 |
+
# Dropout layer
|
60 |
+
self.dropout = nn.Dropout(0.5)
|
61 |
+
|
62 |
+
# Fully connected layer
|
63 |
+
self.fc = nn.Linear(len(cnn_kernel_sizes) * cnn_out_channels, num_classes)
|
64 |
+
|
65 |
+
def forward(self, input_ids, attention_mask):
|
66 |
+
# Get hidden states from the transformer model
|
67 |
+
transformer_outputs = self.transformer(input_ids=input_ids, attention_mask=attention_mask)
|
68 |
+
hidden_states = transformer_outputs.last_hidden_state # Shape: (batch_size, seq_len, hidden_size)
|
69 |
+
|
70 |
+
# Transpose for CNN input: (batch_size, hidden_size, seq_len)
|
71 |
+
hidden_states = hidden_states.transpose(1, 2)
|
72 |
+
|
73 |
+
# Apply convolution and pooling
|
74 |
+
conv_outputs = [torch.relu(conv(hidden_states)) for conv in self.convs]
|
75 |
+
pooled_outputs = [torch.max(output, dim=2)[0] for output in conv_outputs]
|
76 |
+
|
77 |
+
# Concatenate pooled outputs and apply dropout
|
78 |
+
cat_output = torch.cat(pooled_outputs, dim=1)
|
79 |
+
cat_output = self.dropout(cat_output)
|
80 |
+
|
81 |
+
# Final classification
|
82 |
+
logits = self.fc(cat_output)
|
83 |
+
|
84 |
+
return logits
|
85 |
+
|
86 |
+
|
87 |
+
class SentimentCNNModel(nn.Module):
|
88 |
+
def __init__(self, transformer_model_name, num_classes, cnn_out_channels=100, cnn_kernel_sizes=[3, 5, 7]):
|
89 |
+
super(SentimentCNNModel, self).__init__()
|
90 |
+
# Load pre-trained transformer model
|
91 |
+
self.transformer = AutoModel.from_pretrained(transformer_model_name)
|
92 |
+
|
93 |
+
# CNN layers with multiple kernel sizes
|
94 |
+
self.convs = nn.ModuleList([
|
95 |
+
nn.Conv1d(in_channels=self.transformer.config.hidden_size,
|
96 |
+
out_channels=cnn_out_channels,
|
97 |
+
kernel_size=k)
|
98 |
+
for k in cnn_kernel_sizes
|
99 |
+
])
|
100 |
+
|
101 |
+
# Dropout layer
|
102 |
+
self.dropout = nn.Dropout(0.5)
|
103 |
+
|
104 |
+
# Fully connected layer
|
105 |
+
self.fc = nn.Linear(len(cnn_kernel_sizes) * cnn_out_channels, num_classes)
|
106 |
+
|
107 |
+
def forward(self, input_ids, attention_mask):
|
108 |
+
# Get hidden states from the transformer model
|
109 |
+
transformer_outputs = self.transformer(input_ids=input_ids, attention_mask=attention_mask)
|
110 |
+
hidden_states = transformer_outputs.last_hidden_state # Shape: (batch_size, seq_len, hidden_size)
|
111 |
+
|
112 |
+
# Transpose for CNN input: (batch_size, hidden_size, seq_len)
|
113 |
+
hidden_states = hidden_states.transpose(1, 2)
|
114 |
+
|
115 |
+
# Apply convolution and pooling
|
116 |
+
conv_outputs = [torch.relu(conv(hidden_states)) for conv in self.convs]
|
117 |
+
pooled_outputs = [torch.max(output, dim=2)[0] for output in conv_outputs]
|
118 |
+
|
119 |
+
# Concatenate pooled outputs and apply dropout
|
120 |
+
cat_output = torch.cat(pooled_outputs, dim=1)
|
121 |
+
cat_output = self.dropout(cat_output)
|
122 |
+
|
123 |
+
# Final classification
|
124 |
+
logits = self.fc(cat_output)
|
125 |
+
|
126 |
+
return logits
|
my_model/config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"model_type": "CNNForYorubaNER", "num_classes": 9, "max_length": 128, "pretrained_model_name": "masakhane/afroxlmr-large-ner-masakhaner-1.0_2.0"}
|
my_model/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f6df5d161a93b1a7470e4e0cb4f1d8a9dbeb74a9fb56b72d318dad0731c9a379
|
3 |
+
size 2236003390
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
transformers
|
3 |
+
huggingface_hub
|
4 |
+
streamlit
|
sent_model/config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"model_type": "CNNForSentimentAnalysis", "num_classes": 2, "max_length": 128, "pretrained_model_name": "Davlan/naija-twitter-sentiment-afriberta-large"}
|
sent_model/sent_pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1f9eb93cf4592a046678a953616e4281e7bba91703e19a563cb7074ed7c69d33
|
3 |
+
size 507210373
|