changes based on stuffs
Browse files
main.py
CHANGED
@@ -7,19 +7,26 @@ import pandas as pd
|
|
7 |
import altair as alt
|
8 |
|
9 |
# Load the Yoruba NER model
|
10 |
-
ner_model_name = "./my_model/pytorch_model.bin"
|
11 |
-
model_ner = "Testys/cnn_yor_ner"
|
12 |
-
ner_tokenizer = AutoTokenizer.from_pretrained(model_ner)
|
13 |
-
with open("./my_model/config.json", "r") as f:
|
14 |
-
|
15 |
-
|
16 |
-
ner_model = CNNForNER(
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
ner_model.load_state_dict(torch.load(ner_model_name, map_location=torch.device('cpu')))
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
ner_model.eval()
|
22 |
|
|
|
23 |
# Load the Yoruba sentiment analysis model
|
24 |
sentiment_model_name = "./sent_model/sent_pytorch_model.bin"
|
25 |
model_sent = "Testys/cnn_sent_yor"
|
@@ -39,21 +46,19 @@ sentiment_model.eval()
|
|
39 |
|
40 |
def analyze_text(text):
|
41 |
# Tokenize input text for NER
|
42 |
-
ner_inputs = ner_tokenizer(text,
|
43 |
-
|
44 |
-
input_ids = ner_inputs['input_ids']
|
45 |
-
|
46 |
-
# Converting token IDs back to tokens
|
47 |
-
tokens = [ner_tokenizer.convert_ids_to_tokens(id) for id in input_ids.squeeze().tolist()]
|
48 |
-
|
49 |
|
50 |
# Perform Named Entity Recognition
|
|
|
51 |
with torch.no_grad():
|
52 |
ner_outputs = ner_model(**ner_inputs)
|
53 |
|
54 |
-
|
|
|
|
|
55 |
ner_labels = ner_predictions.tolist()
|
56 |
-
ner_labels
|
|
|
57 |
|
58 |
#matching the tokens with the labels
|
59 |
ner_labels = [f"{token}: {label}" for token, label in zip(tokens, ner_labels)]
|
|
|
7 |
import altair as alt
|
8 |
|
9 |
# Load the Yoruba NER model
|
10 |
+
# ner_model_name = "./my_model/pytorch_model.bin"
|
11 |
+
# model_ner = "Testys/cnn_yor_ner"
|
12 |
+
# ner_tokenizer = AutoTokenizer.from_pretrained(model_ner)
|
13 |
+
# with open("./my_model/config.json", "r") as f:
|
14 |
+
# ner_config = json.load(f)
|
15 |
+
|
16 |
+
# ner_model = CNNForNER(
|
17 |
+
# pretrained_model_name=ner_config["pretrained_model_name"],
|
18 |
+
# num_classes=ner_config["num_classes"]
|
19 |
+
# )
|
20 |
+
# ner_model.load_state_dict(torch.load(ner_model_name, map_location=torch.device('cpu')))
|
21 |
+
# ner_model.eval()
|
22 |
+
|
23 |
+
ner_model = AutoModelForTokenClassification.from_pretrained("masakhane/afroxlmr-large-ner-masakhaner-1.0_2.0")
|
24 |
+
ner_tokenizers = AutoTokenizer.from_pretrained("masakhane/afroxlmr-large-ner-masakhaner-1.0_2.0")
|
25 |
+
ner_config = ner_model.config
|
26 |
+
|
27 |
ner_model.eval()
|
28 |
|
29 |
+
|
30 |
# Load the Yoruba sentiment analysis model
|
31 |
sentiment_model_name = "./sent_model/sent_pytorch_model.bin"
|
32 |
model_sent = "Testys/cnn_sent_yor"
|
|
|
46 |
|
47 |
def analyze_text(text):
|
48 |
# Tokenize input text for NER
|
49 |
+
ner_inputs = ner_tokenizer(text, return_tensors="pt")
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
# Perform Named Entity Recognition
|
52 |
+
tokens = ner_tokenizer.convert_ids_to_tokens(ner_inputs.input_ids[0])
|
53 |
with torch.no_grad():
|
54 |
ner_outputs = ner_model(**ner_inputs)
|
55 |
|
56 |
+
print(ner_outputs)
|
57 |
+
|
58 |
+
ner_predictions = torch.argmax(ner_outputs.logits, dim=-1)[0]
|
59 |
ner_labels = ner_predictions.tolist()
|
60 |
+
print(ner_labels)
|
61 |
+
ner_labels = [ner_config.id2label[label] for label in ner_labels]
|
62 |
|
63 |
#matching the tokens with the labels
|
64 |
ner_labels = [f"{token}: {label}" for token, label in zip(tokens, ner_labels)]
|