from PIL import Image import io import torch from transformers import BlipProcessor, BlipForConditionalGeneration device = "cuda" if torch.cuda.is_available() else "cpu" class ImageCaptioning: def __init__(self): self.processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base") self.model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base").to(device) def get_caption(self, image_bytes): img = Image.open(io.BytesIO(image_bytes)) img_tensors = self.processor(img, return_tensors="pt").to(device) output = self.model.generate(**img_tensors) caption = self.processor.batch_decode(output, skip_special_tokens=True)[0] return caption