import requests from transformers import AutoTokenizer, AutoModelForSeq2SeqLM class TopicGenerator: def __init__(self): # Initialize Model and Tokenizer self.topic_generator_processor = AutoTokenizer.from_pretrained("google/flan-t5-large") self.topic_generator_model = AutoModelForSeq2SeqLM.from_pretrained("google/flan-t5-large") self.topic_generator_model.eval() def generate_topics(self, user_input, num_topics=3): base_prompt = "Generate short, creative titles or topics based on the detailed information provided:" # Construct the prompt based on whether additional context is provided full_prompt = (f"{base_prompt}\n\n" f"Context: {user_input}\n\n" f"Task: Create {num_topics} inventive titles or topics (2-5 words each) that blend the essence of the image with the additional context. " f"These titles should be imaginative and suitable for use as hashtags, image titles, or starting points for discussions." f"IMPORTANT: Be imaginative and concise in your responses. Avoid repeating the same ideas in different words." f"Also make sure to provide a title/topic that relates to every context provided while following the examples listed below as a way of being creative and intuitive." ) # Provide creative examples to inspire the model examples = """ Creative examples to inspire your titles/topics: - "Misty Peaks at Dawn" - "Graffiti Lanes of Urbania" - "Chef’s Secret Ingredients" - "Neon Future Skylines" - "Puppy’s First Snow" - "Edge of Adventure" """ full_prompt += examples # Generate Topics input_text = self.topic_generator_processor(full_prompt, return_tensors="pt") outputs = self.topic_generator_model.generate(input_ids=input_text["input_ids"], max_length=20, num_return_sequences=num_topics, num_beams=5, no_repeat_ngram_size=5, top_k=50, top_p=0.95, temperature=0.9) topics = [self.topic_generator_processor.decode(output, skip_special_tokens=True) for output in outputs] return topics