from transformers import BlipProcessor, BlipForConditionalGeneration, AutoTokenizer, AutoModelForSeq2SeqLM import torch import requests from dotenv import load_dotenv from image_utils import UrlTest import os img = UrlTest() class ImageCaptioning: def __init__(self): # Initialize Model and Tokenizer self.blip_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base") self.blip_model = BlipForConditionalGeneration.from_pretrained('Salesforce/blip-image-captioning-base') self.topic_generator_processor = AutoTokenizer.from_pretrained("google/flan-t5-large") self.topic_generator_model = AutoModelForSeq2SeqLM.from_pretrained("google/flan-t5-large") self.blip_model.eval() self.topic_generator_model.eval() def generate_caption(self, image): # Generate Caption input_text = self.blip_processor(image, return_tensors="pt") outputs = self.blip_model.generate(pixel_values=input_text["pixel_values"], max_new_tokens=128, do_sample=True, temperature=0.5, top_k=50, top_p=0.95) caption_output = [self.blip_processor.decode(output, skip_special_tokens=True) for output in outputs] return outputs def generate_topics(self, caption, additional_text=None, num_topics=3): base_prompt = "Generate short, creative titles or topics based on the detailed information provided:" # Construct the prompt based on whether additional context is provided if additional_text: full_prompt = (f"{base_prompt}\n\n" f"Image description: {caption}\n\n" f"Additional context: {additional_text}\n\n" f"Task: Create {num_topics} inventive titles or topics (2-5 words each) that blend the essence of the image with the additional context. " f"These titles should be imaginative and suitable for use as hashtags, image titles, or starting points for discussions." f"IMPORTANT: Be imaginative and concise in your responses. Avoid repeating the same ideas in different words." f"Also make sure to provide a title/topic that relates to every context provided while following the examples listed below as a way of being creative and intuitive." ) else: full_prompt = (f"{base_prompt}\n\n" f"Image description: {caption}\n\n" f"Task: Create {num_topics} inventive titles or topics (2-5 words each) that encapsulate the essence of the image. " f"These titles should be imaginative and suitable for use as hashtags, image titles, or starting points for discussions." f"IMPORTANT: Be imaginative and concise in your responses. Avoid repeating the same ideas in different words." f"Also make sure to provide a title/topic that relates to every context provided while following the examples listed below as a way of being creative and intuitive." ) # Provide creative examples to inspire the model examples = """ Creative examples to inspire your titles/topics: - "Misty Peaks at Dawn" - "Graffiti Lanes of Urbania" - "Chef’s Secret Ingredients" - "Neon Future Skylines" - "Puppy’s First Snow" - "Edge of Adventure" """ # Append the examples to the prompt with a clear creative directive full_prompt += f"\n{examples}\nNow, inspired by these examples, create {num_topics} short and descriptive titles/topics based on the information provided.\n" print(full_prompt) # Generate the topics using the T5 model with adjusted parameters inputs = self.topic_generator_processor(full_prompt, return_tensors="pt", padding=True, truncation=True, max_length=512) outputs = self.topic_generator_model.generate( **inputs, num_return_sequences=num_topics, do_sample=True, temperature=0.7, max_length=32, # Reduced for shorter outputs top_k=50, top_p=0.95, num_beams=5, no_repeat_ngram_size=2 ) topics = [self.topic_generator_processor.decode(output, skip_special_tokens=True).strip() for output in outputs] return [topic for topic in topics if topic and len(topic.split()) > 1] def combo_model(self, image, additional_text=None): image = img.load_image(image) caption = self.generate_caption(image) caption = self.blip_processor.decode(caption[0], skip_special_tokens=True) topics = self.generate_topics(caption, additional_text) return { "caption": caption, "topics": topics }