#ran on Kaggle !pip install sentence-transformers !pip install torch import torch from sentence_transformers import SentenceTransformer import numpy as np import pandas as pd from tqdm import tqdm # For tracking progress in batches # Check if GPU is available device = "cuda" if torch.cuda.is_available() else "cpu" print(f"Using device: {device}") # Load dataset dataset = pd.read_csv('/kaggle/input/d/infamouscoder/dataset-netflix-shows/netflix_titles.csv') # Load model to GPU if available model = SentenceTransformer("all-MiniLM-L6-v2").to(device) # Combine fields for embeddings def combine_description_title_and_genre(description, listed_in, title): return f"{description} Genre: {listed_in} Title: {title}" # Create combined text column dataset['combined_text'] = dataset.apply(lambda row: combine_description_title_and_genre(row['description'], row['listed_in'], row['title']), axis=1) # Generate embeddings in batches to save memory batch_size = 32 embeddings = [] for i in tqdm(range(0, len(dataset), batch_size), desc="Generating Embeddings"): batch_texts = dataset['combined_text'][i:i+batch_size].tolist() batch_embeddings = model.encode(batch_texts, convert_to_tensor=True, device=device) embeddings.extend(batch_embeddings.cpu().numpy()) # Move to CPU to save memory # Convert list to numpy array embeddings = np.array(embeddings) # Save embeddings and metadata np.save("/kaggle/working/netflix_embeddings.npy", embeddings) dataset[['show_id', 'title', 'description', 'listed_in']].to_csv("/kaggle/working/netflix_metadata.csv", index=False)