File size: 21,999 Bytes
2581217
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
# Copyright (c) Meta Platforms, Inc. and affiliates.

# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.


import numpy.random as random
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
from math import exp

class SiLogLoss(nn.Module):
    def __init__(self, lambd=0.5, eps=1e-6):
        super().__init__()
        self.lambd = lambd
        self.eps = eps  # 防止log(0)的微小常数

    def forward(self, pred, target):
        # 将输入转换为float32计算关键部分
        pred = pred.float()
        target = target.float()
        
        # 添加eps防止log(0)并提升数值稳定性
        diff_log = torch.log(target + self.eps) - torch.log(pred + self.eps)
        loss = torch.sqrt(
            (diff_log ** 2).mean() - self.lambd * (diff_log.mean() ** 2) + self.eps
        )
        return loss

class IntegrityPriorLoss(nn.Module):
    def __init__(self, epsilon=1e-8):
        super().__init__()

        self.epsilon = epsilon
        self.max_variance = 0.05
        self.max_grad = 0.05

        self.sobel_x = nn.Conv2d(1, 1, kernel_size=3, stride=1, padding=1, bias=False)
        self.sobel_y = nn.Conv2d(1, 1, kernel_size=3, stride=1, padding=1, bias=False)
        
        sobel_kernel_x = torch.tensor([[[[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]]]], dtype=torch.float32)
        sobel_kernel_y = torch.tensor([[[[-1, -2, -1], [0, 0, 0], [1, 2, 1]]]], dtype=torch.float32)
        
        self.sobel_x.weight.data = sobel_kernel_x
        self.sobel_y.weight.data = sobel_kernel_y
        
        for param in self.parameters():
            param.requires_grad = False

    def forward(self, mask, depth_map, gt):
        #对FP计算与均值的差距,越远loss越高
        #对FN计算与均值的差距,越近loss越高
        py = gt*mask + (1-gt)*(1-mask)
        FP = (1-py)*mask
        FN = (1-py)*gt
        logP = -torch.log(py + self.epsilon)
        diff = (depth_map-((depth_map*gt).sum()/gt.sum()))**2
        FPdiff = (diff)*FP
        FNdiff = (1-diff)*FN
        vareight = (FPdiff+FNdiff)*py    
        variance = logP * vareight  # [B,1]
        variance_loss = torch.mean(variance)

        grad_x = abs(self.sobel_x(depth_map))  # [B,1,H,W]
        grad_y = abs(self.sobel_y(depth_map))  # [B,1,H,W]
        
        masked_grad_x = grad_x * logP
        masked_grad_y = grad_y * logP
        
        grad = (masked_grad_x + masked_grad_y)
        grad_loss = torch.mean(grad)

        total_loss = variance_loss + grad_loss
        return total_loss
def gaussian(window_size, sigma):
    gauss = torch.Tensor([exp(-(x - window_size//2)**2/float(2*sigma**2)) for x in range(window_size)])
    return gauss/gauss.sum()

def create_window(window_size, channel):
    _1D_window = gaussian(window_size, 1.5).unsqueeze(1)
    _2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0)
    window = Variable(_2D_window.expand(channel, 1, window_size, window_size).contiguous())
    return window

def _ssim(img1, img2, window, window_size, channel, size_average=True):
    mu1 = F.conv2d(img1, window, padding = window_size//2, groups=channel)
    mu2 = F.conv2d(img2, window, padding = window_size//2, groups=channel)

    mu1_sq = mu1.pow(2)
    mu2_sq = mu2.pow(2)
    mu1_mu2 = mu1*mu2

    sigma1_sq = F.conv2d(img1*img1, window, padding=window_size//2, groups=channel) - mu1_sq
    sigma2_sq = F.conv2d(img2*img2, window, padding=window_size//2, groups=channel) - mu2_sq
    sigma12 = F.conv2d(img1*img2, window, padding=window_size//2, groups=channel) - mu1_mu2

    C1 = 0.01**2
    C2 = 0.03**2

    ssim_map = ((2*mu1_mu2 + C1)*(2*sigma12 + C2))/((mu1_sq + mu2_sq + C1)*(sigma1_sq + sigma2_sq + C2))

    if size_average:
        return ssim_map.mean()
    else:
        return ssim_map.mean(1).mean(1).mean(1)

class SSIMLoss(torch.nn.Module):
    def __init__(self, window_size=11, size_average=True):
        super(SSIMLoss, self).__init__()
        self.window_size = window_size
        self.size_average = size_average
        self.channel = 1
        self.window = create_window(window_size, self.channel)

    def forward(self, img1, img2):
        (_, channel, _, _) = img1.size()
        if channel == self.channel and self.window.data.type() == img1.data.type():
            window = self.window
        else:
            window = create_window(self.window_size, channel)
            if img1.is_cuda:
                window = window.cuda(img1.get_device())
            window = window.type_as(img1)
            self.window = window
            self.channel = channel
        return 1 - (1 + _ssim(img1, img2, window, self.window_size, channel, self.size_average)) / 2

def circular_highPassFiltering(img, ratio):
    device = img.device
    batch_size,_,height,width = img.shape
    sigma = (height * (ratio[...,None,None])) / 4
    center_h = height // 2
    center_w = width // 2
    grid_y, grid_x = torch.meshgrid(torch.arange(-center_h, height - center_h),
                                    torch.arange(-center_w, width - center_w))
    grid_y = grid_y[None,None,...].repeat(batch_size, 1, 1, 1).to(device)
    grid_x = grid_x[None,None,...].repeat(batch_size, 1, 1, 1).to(device)
    # 按照二维高斯分布公式计算每个位置的值
    gaussian_values = (1 / (2 * torch.pi * sigma ** 2)) * torch.exp(-(grid_x ** 2 + grid_y ** 2) / (2 * sigma ** 2))
    gmin = gaussian_values.flatten(-2).min(dim=-1)[0][...,None,None]
    gmax = gaussian_values.flatten(-2).max(dim=-1)[0][...,None,None]
    decreasing_matrix = (gaussian_values-gmin) / (gmax-gmin)  # 根据归一化距离计算灰度值
    mask = ((0.5-decreasing_matrix)*100).sigmoid()
    fft = torch.fft.fft2(img)
    fft_shift = torch.fft.fftshift(fft,dim=(2,3))
    fft_shift = torch.mul(fft_shift, mask)
    idft_shift = torch.fft.ifftshift(fft_shift,dim=(2,3))
    ifimg = torch.fft.ifft2(idft_shift)
    ifimg = torch.abs(ifimg)
    ifmin = ifimg.flatten(-2).min(dim=-1)[0][...,None,None]
    ifmax = ifimg.flatten(-2).max(dim=-1)[0][...,None,None]
    ifimg = (ifimg-ifmin) / (ifmax-ifmin)  # 根据归一化距离计算灰度值
    return mask,ifimg

def _upsample_like(src,tar,mode='bilinear'):
    if mode == 'bilinear':
        src = F.upsample(src,size=tar.shape[2:],mode=mode,align_corners=True)
    else:
        src = F.upsample(src,size=tar.shape[2:],mode=mode)
    return src

def _upsample_(src,size,mode='bilinear'):
    if mode == 'bilinear':
        src = F.upsample(src,size=size,mode=mode,align_corners=True)
    else:
        src = F.upsample(src,size=size,mode=mode)
    return src

def patchfy(x,p=4,c=4):
    h = w = x.shape[2] // p
    x = x.reshape(shape=(x.shape[0], c, h, p, w, p))
    x = torch.einsum('nchpwq->nhwpqc', x)
    x = x.reshape(shape=(x.shape[0], h * w, p**2 * c))
    return x
    
def unpatchfy(x,p=4,c=4):
    h = w = round(x.shape[1]**0.5)
    x = x.reshape(shape=(x.shape[0], h, w, p, p, c))
    x = torch.einsum('nhwpqc->nchpwq', x)
    x = x.reshape(shape=(x.shape[0], c, h * p, h * p))
    return x


# def structure_loss(pred, mask):
#     size = 15
#     pad = size//2
#     M_edge = mask
#     N_edge = 1 - M_edge
#     for i in range(2):
#         M_edge = abs(torch.nn.functional.max_pool2d(M_edge, kernel_size=size, stride=1, padding=pad))
#         N_edge = abs(torch.nn.functional.max_pool2d(N_edge, kernel_size=size, stride=1, padding=pad))
#     edge = M_edge + N_edge - 1
#     edge = abs(torch.nn.functional.avg_pool2d(edge, kernel_size=size, stride=1, padding=pad))
#     weit  = 1+2.5*edge

#     wbce  = F.binary_cross_entropy_with_logits(pred, mask, reduction='none')
#     wbce  = (weit*wbce).sum(dim=(2,3))/weit.sum(dim=(2,3))
#     pred  = torch.sigmoid(pred)
#     inter = ((pred * mask) * weit).sum(dim=(2, 3))
#     union = ((pred + mask) * weit).sum(dim=(2, 3))
#     wiou  = 1-(inter+1)/(union-inter+1)
#     return (wbce+wiou).mean()

def structure_loss(pred, mask):
    weit  = 1+5*torch.abs(F.avg_pool2d(mask, kernel_size=31, stride=1, padding=15)-mask)
    wbce  = F.binary_cross_entropy_with_logits(pred, mask, reduction='none')
    wbce  = (weit*wbce).sum(dim=(2,3))/weit.sum(dim=(2,3))


    pred  = torch.sigmoid(pred)
    inter = ((pred * mask) * weit).sum(dim=(2, 3))

    union = ((pred + mask) * weit).sum(dim=(2, 3))
    wiou  = 1-(inter+1)/(union-inter+1)

    return (wbce+wiou).mean()

def iou_loss(pred, mask):
    eps = 1e-6
    inter = (pred * mask).sum(dim=(2, 3)) #交集
    union = (pred + mask).sum(dim=(2, 3)) - inter #并集-交集
    iou = 1 - (inter + eps) / (union + eps)
    return iou.mean()

def dice_loss(pred, mask):
    eps = 1e-6
    N = pred.size()[0]
    pred_flat = pred.view(N,-1)
    mask_flat = mask.view(N,-1)

    intersection = (pred_flat * mask_flat).sum(1)
    dice_coefficient = (2. * intersection + eps) / (pred_flat.sum(1) + mask_flat.sum(1) + eps)
    dice_loss_value = 1 - dice_coefficient.sum()/N
    return dice_loss_value

class LargeK(nn.Module):
    """ LargeK Block.
    
    Args:
        dim (int): Number of input channels.
        drop_path (float): Stochastic depth rate. Default: 0.0
    """
    def __init__(self, dim):
        super().__init__()
        self.channel_split = nn.Conv2d(dim,dim*3,kernel_size=1)
        self.dwconv1 = nn.Conv2d(dim, dim, kernel_size=7, dilation=2, padding=6, groups=dim) # depthwise conv
        self.dwconv2 = nn.Conv2d(dim, dim, kernel_size=7, dilation=4, padding=12, groups=dim) # depthwise conv
        self.dwconv3 = nn.Conv2d(dim, dim, kernel_size=7, dilation=8, padding=24, groups=dim) # depthwise conv
        self.channel_mix = nn.Conv2d(dim*3,dim,kernel_size=1)

    def forward(self, x):
        x = self.channel_split(x)
        x1,x2,x3 = torch.chunk(x,3,dim=1)
        x1 = self.dwconv1(x1)
        x2 = self.dwconv2(x2)
        x3 = self.dwconv3(x3)
        x = torch.cat([x1,x2,x3],dim=1)
        x = self.channel_mix(x)
        return x

class GANLoss(nn.Module):
    """Define different GAN objectives.

    The GANLoss class abstracts away the need to create the target label tensor
    that has the same size as the input.
    """

    def __init__(self, gan_mode, target_real_label=1.0, target_fake_label=0.0):
        """ Initialize the GANLoss class.

        Parameters:
            gan_mode (str) - - the type of GAN objective. It currently supports vanilla, lsgan, and wgangp.
            target_real_label (bool) - - label for a real image
            target_fake_label (bool) - - label of a fake image

        Note: Do not use sigmoid as the last layer of Discriminator.
        LSGAN needs no sigmoid. vanilla GANs will handle it with BCEWithLogitsLoss.
        """
        super(GANLoss, self).__init__()
        self.register_buffer('real_label', torch.tensor(target_real_label))
        self.register_buffer('fake_label', torch.tensor(target_fake_label))
        self.gan_mode = gan_mode
        if gan_mode == 'lsgan':
            self.loss = nn.MSELoss()
        elif gan_mode == 'vanilla':
            self.loss = nn.BCEWithLogitsLoss()
        elif gan_mode in ['wgangp']:
            self.loss = None
        else:
            raise NotImplementedError('gan mode %s not implemented' % gan_mode)

    def get_target_tensor(self, prediction, target_is_real):
        """Create label tensors with the same size as the input.

        Parameters:
            prediction (tensor) - - tpyically the prediction from a discriminator
            target_is_real (bool) - - if the ground truth label is for real images or fake images

        Returns:
            A label tensor filled with ground truth label, and with the size of the input
        """

        if target_is_real:
            target_tensor = self.real_label
        else:
            target_tensor = self.fake_label
        return target_tensor.expand_as(prediction)

    def __call__(self, prediction, target_is_real):
        """Calculate loss given Discriminator's output and grount truth labels.

        Parameters:
            prediction (tensor) - - tpyically the prediction output from a discriminator
            target_is_real (bool) - - if the ground truth label is for real images or fake images

        Returns:
            the calculated loss.
        """
        if self.gan_mode in ['lsgan', 'vanilla']:
            target_tensor = self.get_target_tensor(prediction, target_is_real)
            loss = self.loss(prediction, target_tensor)
        elif self.gan_mode == 'wgangp':
            if target_is_real:
                loss = -prediction.mean()
            else:
                loss = prediction.mean()
        return loss

def sinusoidal_position_embedding(batch_size, nums_head, max_len, output_dim, device):
    # (max_len, 1)
    position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(-1)
    # (output_dim//2)
    ids = torch.arange(0, output_dim // 2, dtype=torch.float)  # 即公式里的i, i的范围是 [0,d/2]
    theta = torch.pow(10000, -2 * ids / output_dim)

    # (max_len, output_dim//2)
    embeddings = position * theta  # 即公式里的:pos / (10000^(2i/d))

    # (max_len, output_dim//2, 2)
    embeddings = torch.stack([torch.sin(embeddings), torch.cos(embeddings)], dim=-1)

    # (bs, head, max_len, output_dim//2, 2)
    embeddings = embeddings.repeat((batch_size, nums_head, *([1] * len(embeddings.shape))))  # 在bs维度重复,其他维度都是1不重复

    # (bs, head, max_len, output_dim)
    # reshape后就是:偶数sin, 奇数cos了
    embeddings = torch.reshape(embeddings, (batch_size, nums_head, max_len, output_dim))
    embeddings = embeddings.to(device)
    return embeddings

def RoPE(q, k):
    # q,k: (bs, head, max_len, output_dim)
    use_multi_head = True
    if q.size() == 3 and k.size() == 3:
        use_multi_head = False
        q, k = q[:,None,...], k[:,None,...]
    batch_size = q.shape[0]
    nums_head = q.shape[1]
    max_len = q.shape[2]
    output_dim = q.shape[-1]

    # (bs, head, max_len, output_dim)
    pos_emb = sinusoidal_position_embedding(batch_size, nums_head, max_len, output_dim, q.device)


    # cos_pos,sin_pos: (bs, head, max_len, output_dim)
    # 看rope公式可知,相邻cos,sin之间是相同的,所以复制一遍。如(1,2,3)变成(1,1,2,2,3,3)
    cos_pos = pos_emb[...,  1::2].repeat_interleave(2, dim=-1)  # 将奇数列信息抽取出来也就是cos 拿出来并复制
    sin_pos = pos_emb[..., ::2].repeat_interleave(2, dim=-1)  # 将偶数列信息抽取出来也就是sin 拿出来并复制

    # q,k: (bs, head, max_len, output_dim)
    q2 = torch.stack([-q[..., 1::2], q[..., ::2]], dim=-1)
    q2 = q2.reshape(q.shape)  # reshape后就是正负交替了

    # 更新qw, *对应位置相乘
    q = q * cos_pos + q2 * sin_pos

    k2 = torch.stack([-k[..., 1::2], k[..., ::2]], dim=-1)
    k2 = k2.reshape(k.shape)
    # 更新kw, *对应位置相乘
    k = k * cos_pos + k2 * sin_pos
    if not use_multi_head:
        q, k = q[:,0], k[:,0]
    return q, k

class SwiGLU(nn.Module):
    def __init__(self, hidden_size: int, intermediate_size: int) -> None:
        super().__init__()
        self.w1 = nn.Linear(hidden_size, intermediate_size, bias=False)
        self.w2 = nn.Linear(intermediate_size, hidden_size, bias=False)
        self.w3 = nn.Linear(hidden_size, intermediate_size, bias=False)
        
    def forward(self, x: torch.Tensor) -> torch.Tensor:
        # x: (batch_size, seq_len, hidden_size)
        # w1(x) -> (batch_size, seq_len, intermediate_size)
        # w3(x) -> (batch_size, seq_len, intermediate_size)
        # w2(*) -> (batch_size, seq_len, hidden_size)
    	return self.w2(F.silu(self.w1(x)) * self.w3(x))

class LayerNorm(nn.Module):
    """ LayerNorm that supports two data formats: channels_last (default) or channels_first. 
    The ordering of the dimensions in the inputs. channels_last corresponds to inputs with 
    shape (batch_size, height, width, channels) while channels_first corresponds to inputs 
    with shape (batch_size, channels, height, width).
    """
    def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
        super().__init__()
        self.weight = nn.Parameter(torch.ones(normalized_shape))
        self.bias = nn.Parameter(torch.zeros(normalized_shape))
        self.eps = eps
        self.data_format = data_format
        if self.data_format not in ["channels_last", "channels_first"]:
            raise NotImplementedError 
        self.normalized_shape = (normalized_shape, )
    
    def forward(self, x):
        if self.data_format == "channels_last":
            return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
        elif self.data_format == "channels_first":
            u = x.mean(1, keepdim=True)
            s = (x - u).pow(2).mean(1, keepdim=True)
            x = (x - u) / torch.sqrt(s + self.eps)
            x = self.weight[:, None, None] * x + self.bias[:, None, None]
            return x

class RMSNorm(nn.Module):
    def __init__(self, hidden_size: int, eps: float = 1e-6, data_format="channels_first") -> None:
        super().__init__()
        self.eps = eps
        self.weight = nn.Parameter(torch.ones(hidden_size))
        self.data_format = data_format
  
    def _norm(self, hidden_states):
        if self.data_format == "channels_first":
            variance = hidden_states.pow(2).mean(dim=(1), keepdim=True)  # 在高和宽维度上计算均值
        elif self.data_format == "channels_last":
            variance = hidden_states.pow(2).mean(dim=-1, keepdim=True)
        return hidden_states * torch.rsqrt(variance + self.eps)
  
    def forward(self, hidden_states):
        if self.data_format == "channels_first":
            return self.weight[..., None, None] * self._norm(hidden_states.float()).type_as(hidden_states)
        elif self.data_format == "channels_last":
            return self.weight * self._norm(hidden_states.float()).type_as(hidden_states)

class GRN(nn.Module):
    """ GRN (Global Response Normalization) layer
    """
    def __init__(self, dim):
        super().__init__()
        self.gamma = nn.Parameter(torch.zeros(1, 1, 1, dim))
        self.beta = nn.Parameter(torch.zeros(1, 1, 1, dim))

    def forward(self, x):
        Gx = torch.norm(x, p=2, dim=(1,2), keepdim=True)
        Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-6)
        return self.gamma * (x * Nx) + self.beta + x
    
class DUpsampling(nn.Module):
    def __init__(self, inplanes, scale, pad=0):
        super(DUpsampling, self).__init__()
        self.conv1 = nn.Conv2d(inplanes, inplanes* scale * scale, kernel_size=1, padding = pad)
        self.scale = scale
    
    def forward(self, x):
        x = self.conv1(x)
        N, C, H, W = x.size()
        # N, H, W, C
        x_permuted = x.permute(0, 2, 3, 1) 

        # N, H, W*scale, C/scale
        x_permuted = x_permuted.contiguous().view((N, H, W * self.scale, int(C / (self.scale))))

        # N, W*scale,H, C/scale
        x_permuted = x_permuted.permute(0, 2, 1, 3)
        # N, W*scale,H*scale, C/(scale**2)
        x_permuted = x_permuted.contiguous().view((N, W * self.scale, H * self.scale, int(C / (self.scale * self.scale))))

        # N,C/(scale**2),W*scale,H*scale
        x = x_permuted.permute(0, 3, 2, 1)
        
        return x
    
class REsampling(nn.Module):
    def __init__(self, scale):
        super(REsampling, self).__init__()
        self.scale = scale
    
    def forward(self, x):
        N, C, H, W = x.size()
        # N, H, W, C
        x_permuted = x.permute(0, 2, 3, 1) 

        # N, H, W*scale, C/scale
        x_permuted = x_permuted.contiguous().view((N, H, W * self.scale, int(C / (self.scale))))

        # N, W*scale,H, C/scale
        x_permuted = x_permuted.permute(0, 2, 1, 3)
        # N, W*scale,H*scale, C/(scale**2)
        x_permuted = x_permuted.contiguous().view((N, W * self.scale, H * self.scale, int(C / (self.scale * self.scale))))

        # N,C/(scale**2),W*scale,H*scale
        x = x_permuted.permute(0, 3, 2, 1)
        
        return x
    
class Dcrop(nn.Module):
    def __init__(self,inplanes,cropscale=2):
        super(Dcrop, self).__init__()
        self.conv = nn.Conv2d(inplanes*cropscale*cropscale, inplanes*cropscale*cropscale, kernel_size=3, padding = 1)
        self.cropscale = cropscale
    
    def forward(self, x):
        B,C,H,W = x.size()
        x_permuted = x.permute(0, 2, 3, 1) 
        x_permuted = x_permuted.contiguous().view((B, H, W//self.cropscale, C*self.cropscale))
        x_permuted = x_permuted.permute(0, 2, 1, 3)
        x_permuted = x_permuted.contiguous().view((B, W//self.cropscale, H//self.cropscale, C*self.cropscale*self.cropscale))
        x = x_permuted.permute(0, 3, 2, 1)
        x = self.conv(x)+x
        return x
    
def show_gray_images(images, m=8, alpha=3, cmap='coolwarm',save_path=None):
    if len(images.size()) == 2:
        plt.imshow(images, cmap=cmap)
        plt.axis('off')
    else:
        n, h, w = images.shape
        if n == 1:
            plt.imshow(images[0], cmap=cmap)
            plt.axis('off')
        else:
            if m > n: m = n
            num_rows = (n + m - 1) // m
            fig, axes = plt.subplots(num_rows, m, figsize=(m * 2*alpha, num_rows * 2*alpha))
            plt.subplots_adjust(wspace=0.05, hspace=0.05)
            for i in range(num_rows):
                for j in range(m):
                    idx = i*m + j
                    if m == 1 or num_rows == 1:
                        axes[idx].imshow(images[idx], cmap=cmap)
                        axes[idx].axis('off')
                    elif idx < n:
                        axes[i, j].imshow(images[idx], cmap=cmap)
                        axes[i, j].axis('off')
    if save_path is not None:
        plt.savefig(save_path)
        plt.close()
    else:
        plt.show()