File size: 21,999 Bytes
2581217 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import numpy.random as random
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
from math import exp
class SiLogLoss(nn.Module):
def __init__(self, lambd=0.5, eps=1e-6):
super().__init__()
self.lambd = lambd
self.eps = eps # 防止log(0)的微小常数
def forward(self, pred, target):
# 将输入转换为float32计算关键部分
pred = pred.float()
target = target.float()
# 添加eps防止log(0)并提升数值稳定性
diff_log = torch.log(target + self.eps) - torch.log(pred + self.eps)
loss = torch.sqrt(
(diff_log ** 2).mean() - self.lambd * (diff_log.mean() ** 2) + self.eps
)
return loss
class IntegrityPriorLoss(nn.Module):
def __init__(self, epsilon=1e-8):
super().__init__()
self.epsilon = epsilon
self.max_variance = 0.05
self.max_grad = 0.05
self.sobel_x = nn.Conv2d(1, 1, kernel_size=3, stride=1, padding=1, bias=False)
self.sobel_y = nn.Conv2d(1, 1, kernel_size=3, stride=1, padding=1, bias=False)
sobel_kernel_x = torch.tensor([[[[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]]]], dtype=torch.float32)
sobel_kernel_y = torch.tensor([[[[-1, -2, -1], [0, 0, 0], [1, 2, 1]]]], dtype=torch.float32)
self.sobel_x.weight.data = sobel_kernel_x
self.sobel_y.weight.data = sobel_kernel_y
for param in self.parameters():
param.requires_grad = False
def forward(self, mask, depth_map, gt):
#对FP计算与均值的差距,越远loss越高
#对FN计算与均值的差距,越近loss越高
py = gt*mask + (1-gt)*(1-mask)
FP = (1-py)*mask
FN = (1-py)*gt
logP = -torch.log(py + self.epsilon)
diff = (depth_map-((depth_map*gt).sum()/gt.sum()))**2
FPdiff = (diff)*FP
FNdiff = (1-diff)*FN
vareight = (FPdiff+FNdiff)*py
variance = logP * vareight # [B,1]
variance_loss = torch.mean(variance)
grad_x = abs(self.sobel_x(depth_map)) # [B,1,H,W]
grad_y = abs(self.sobel_y(depth_map)) # [B,1,H,W]
masked_grad_x = grad_x * logP
masked_grad_y = grad_y * logP
grad = (masked_grad_x + masked_grad_y)
grad_loss = torch.mean(grad)
total_loss = variance_loss + grad_loss
return total_loss
def gaussian(window_size, sigma):
gauss = torch.Tensor([exp(-(x - window_size//2)**2/float(2*sigma**2)) for x in range(window_size)])
return gauss/gauss.sum()
def create_window(window_size, channel):
_1D_window = gaussian(window_size, 1.5).unsqueeze(1)
_2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0)
window = Variable(_2D_window.expand(channel, 1, window_size, window_size).contiguous())
return window
def _ssim(img1, img2, window, window_size, channel, size_average=True):
mu1 = F.conv2d(img1, window, padding = window_size//2, groups=channel)
mu2 = F.conv2d(img2, window, padding = window_size//2, groups=channel)
mu1_sq = mu1.pow(2)
mu2_sq = mu2.pow(2)
mu1_mu2 = mu1*mu2
sigma1_sq = F.conv2d(img1*img1, window, padding=window_size//2, groups=channel) - mu1_sq
sigma2_sq = F.conv2d(img2*img2, window, padding=window_size//2, groups=channel) - mu2_sq
sigma12 = F.conv2d(img1*img2, window, padding=window_size//2, groups=channel) - mu1_mu2
C1 = 0.01**2
C2 = 0.03**2
ssim_map = ((2*mu1_mu2 + C1)*(2*sigma12 + C2))/((mu1_sq + mu2_sq + C1)*(sigma1_sq + sigma2_sq + C2))
if size_average:
return ssim_map.mean()
else:
return ssim_map.mean(1).mean(1).mean(1)
class SSIMLoss(torch.nn.Module):
def __init__(self, window_size=11, size_average=True):
super(SSIMLoss, self).__init__()
self.window_size = window_size
self.size_average = size_average
self.channel = 1
self.window = create_window(window_size, self.channel)
def forward(self, img1, img2):
(_, channel, _, _) = img1.size()
if channel == self.channel and self.window.data.type() == img1.data.type():
window = self.window
else:
window = create_window(self.window_size, channel)
if img1.is_cuda:
window = window.cuda(img1.get_device())
window = window.type_as(img1)
self.window = window
self.channel = channel
return 1 - (1 + _ssim(img1, img2, window, self.window_size, channel, self.size_average)) / 2
def circular_highPassFiltering(img, ratio):
device = img.device
batch_size,_,height,width = img.shape
sigma = (height * (ratio[...,None,None])) / 4
center_h = height // 2
center_w = width // 2
grid_y, grid_x = torch.meshgrid(torch.arange(-center_h, height - center_h),
torch.arange(-center_w, width - center_w))
grid_y = grid_y[None,None,...].repeat(batch_size, 1, 1, 1).to(device)
grid_x = grid_x[None,None,...].repeat(batch_size, 1, 1, 1).to(device)
# 按照二维高斯分布公式计算每个位置的值
gaussian_values = (1 / (2 * torch.pi * sigma ** 2)) * torch.exp(-(grid_x ** 2 + grid_y ** 2) / (2 * sigma ** 2))
gmin = gaussian_values.flatten(-2).min(dim=-1)[0][...,None,None]
gmax = gaussian_values.flatten(-2).max(dim=-1)[0][...,None,None]
decreasing_matrix = (gaussian_values-gmin) / (gmax-gmin) # 根据归一化距离计算灰度值
mask = ((0.5-decreasing_matrix)*100).sigmoid()
fft = torch.fft.fft2(img)
fft_shift = torch.fft.fftshift(fft,dim=(2,3))
fft_shift = torch.mul(fft_shift, mask)
idft_shift = torch.fft.ifftshift(fft_shift,dim=(2,3))
ifimg = torch.fft.ifft2(idft_shift)
ifimg = torch.abs(ifimg)
ifmin = ifimg.flatten(-2).min(dim=-1)[0][...,None,None]
ifmax = ifimg.flatten(-2).max(dim=-1)[0][...,None,None]
ifimg = (ifimg-ifmin) / (ifmax-ifmin) # 根据归一化距离计算灰度值
return mask,ifimg
def _upsample_like(src,tar,mode='bilinear'):
if mode == 'bilinear':
src = F.upsample(src,size=tar.shape[2:],mode=mode,align_corners=True)
else:
src = F.upsample(src,size=tar.shape[2:],mode=mode)
return src
def _upsample_(src,size,mode='bilinear'):
if mode == 'bilinear':
src = F.upsample(src,size=size,mode=mode,align_corners=True)
else:
src = F.upsample(src,size=size,mode=mode)
return src
def patchfy(x,p=4,c=4):
h = w = x.shape[2] // p
x = x.reshape(shape=(x.shape[0], c, h, p, w, p))
x = torch.einsum('nchpwq->nhwpqc', x)
x = x.reshape(shape=(x.shape[0], h * w, p**2 * c))
return x
def unpatchfy(x,p=4,c=4):
h = w = round(x.shape[1]**0.5)
x = x.reshape(shape=(x.shape[0], h, w, p, p, c))
x = torch.einsum('nhwpqc->nchpwq', x)
x = x.reshape(shape=(x.shape[0], c, h * p, h * p))
return x
# def structure_loss(pred, mask):
# size = 15
# pad = size//2
# M_edge = mask
# N_edge = 1 - M_edge
# for i in range(2):
# M_edge = abs(torch.nn.functional.max_pool2d(M_edge, kernel_size=size, stride=1, padding=pad))
# N_edge = abs(torch.nn.functional.max_pool2d(N_edge, kernel_size=size, stride=1, padding=pad))
# edge = M_edge + N_edge - 1
# edge = abs(torch.nn.functional.avg_pool2d(edge, kernel_size=size, stride=1, padding=pad))
# weit = 1+2.5*edge
# wbce = F.binary_cross_entropy_with_logits(pred, mask, reduction='none')
# wbce = (weit*wbce).sum(dim=(2,3))/weit.sum(dim=(2,3))
# pred = torch.sigmoid(pred)
# inter = ((pred * mask) * weit).sum(dim=(2, 3))
# union = ((pred + mask) * weit).sum(dim=(2, 3))
# wiou = 1-(inter+1)/(union-inter+1)
# return (wbce+wiou).mean()
def structure_loss(pred, mask):
weit = 1+5*torch.abs(F.avg_pool2d(mask, kernel_size=31, stride=1, padding=15)-mask)
wbce = F.binary_cross_entropy_with_logits(pred, mask, reduction='none')
wbce = (weit*wbce).sum(dim=(2,3))/weit.sum(dim=(2,3))
pred = torch.sigmoid(pred)
inter = ((pred * mask) * weit).sum(dim=(2, 3))
union = ((pred + mask) * weit).sum(dim=(2, 3))
wiou = 1-(inter+1)/(union-inter+1)
return (wbce+wiou).mean()
def iou_loss(pred, mask):
eps = 1e-6
inter = (pred * mask).sum(dim=(2, 3)) #交集
union = (pred + mask).sum(dim=(2, 3)) - inter #并集-交集
iou = 1 - (inter + eps) / (union + eps)
return iou.mean()
def dice_loss(pred, mask):
eps = 1e-6
N = pred.size()[0]
pred_flat = pred.view(N,-1)
mask_flat = mask.view(N,-1)
intersection = (pred_flat * mask_flat).sum(1)
dice_coefficient = (2. * intersection + eps) / (pred_flat.sum(1) + mask_flat.sum(1) + eps)
dice_loss_value = 1 - dice_coefficient.sum()/N
return dice_loss_value
class LargeK(nn.Module):
""" LargeK Block.
Args:
dim (int): Number of input channels.
drop_path (float): Stochastic depth rate. Default: 0.0
"""
def __init__(self, dim):
super().__init__()
self.channel_split = nn.Conv2d(dim,dim*3,kernel_size=1)
self.dwconv1 = nn.Conv2d(dim, dim, kernel_size=7, dilation=2, padding=6, groups=dim) # depthwise conv
self.dwconv2 = nn.Conv2d(dim, dim, kernel_size=7, dilation=4, padding=12, groups=dim) # depthwise conv
self.dwconv3 = nn.Conv2d(dim, dim, kernel_size=7, dilation=8, padding=24, groups=dim) # depthwise conv
self.channel_mix = nn.Conv2d(dim*3,dim,kernel_size=1)
def forward(self, x):
x = self.channel_split(x)
x1,x2,x3 = torch.chunk(x,3,dim=1)
x1 = self.dwconv1(x1)
x2 = self.dwconv2(x2)
x3 = self.dwconv3(x3)
x = torch.cat([x1,x2,x3],dim=1)
x = self.channel_mix(x)
return x
class GANLoss(nn.Module):
"""Define different GAN objectives.
The GANLoss class abstracts away the need to create the target label tensor
that has the same size as the input.
"""
def __init__(self, gan_mode, target_real_label=1.0, target_fake_label=0.0):
""" Initialize the GANLoss class.
Parameters:
gan_mode (str) - - the type of GAN objective. It currently supports vanilla, lsgan, and wgangp.
target_real_label (bool) - - label for a real image
target_fake_label (bool) - - label of a fake image
Note: Do not use sigmoid as the last layer of Discriminator.
LSGAN needs no sigmoid. vanilla GANs will handle it with BCEWithLogitsLoss.
"""
super(GANLoss, self).__init__()
self.register_buffer('real_label', torch.tensor(target_real_label))
self.register_buffer('fake_label', torch.tensor(target_fake_label))
self.gan_mode = gan_mode
if gan_mode == 'lsgan':
self.loss = nn.MSELoss()
elif gan_mode == 'vanilla':
self.loss = nn.BCEWithLogitsLoss()
elif gan_mode in ['wgangp']:
self.loss = None
else:
raise NotImplementedError('gan mode %s not implemented' % gan_mode)
def get_target_tensor(self, prediction, target_is_real):
"""Create label tensors with the same size as the input.
Parameters:
prediction (tensor) - - tpyically the prediction from a discriminator
target_is_real (bool) - - if the ground truth label is for real images or fake images
Returns:
A label tensor filled with ground truth label, and with the size of the input
"""
if target_is_real:
target_tensor = self.real_label
else:
target_tensor = self.fake_label
return target_tensor.expand_as(prediction)
def __call__(self, prediction, target_is_real):
"""Calculate loss given Discriminator's output and grount truth labels.
Parameters:
prediction (tensor) - - tpyically the prediction output from a discriminator
target_is_real (bool) - - if the ground truth label is for real images or fake images
Returns:
the calculated loss.
"""
if self.gan_mode in ['lsgan', 'vanilla']:
target_tensor = self.get_target_tensor(prediction, target_is_real)
loss = self.loss(prediction, target_tensor)
elif self.gan_mode == 'wgangp':
if target_is_real:
loss = -prediction.mean()
else:
loss = prediction.mean()
return loss
def sinusoidal_position_embedding(batch_size, nums_head, max_len, output_dim, device):
# (max_len, 1)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(-1)
# (output_dim//2)
ids = torch.arange(0, output_dim // 2, dtype=torch.float) # 即公式里的i, i的范围是 [0,d/2]
theta = torch.pow(10000, -2 * ids / output_dim)
# (max_len, output_dim//2)
embeddings = position * theta # 即公式里的:pos / (10000^(2i/d))
# (max_len, output_dim//2, 2)
embeddings = torch.stack([torch.sin(embeddings), torch.cos(embeddings)], dim=-1)
# (bs, head, max_len, output_dim//2, 2)
embeddings = embeddings.repeat((batch_size, nums_head, *([1] * len(embeddings.shape)))) # 在bs维度重复,其他维度都是1不重复
# (bs, head, max_len, output_dim)
# reshape后就是:偶数sin, 奇数cos了
embeddings = torch.reshape(embeddings, (batch_size, nums_head, max_len, output_dim))
embeddings = embeddings.to(device)
return embeddings
def RoPE(q, k):
# q,k: (bs, head, max_len, output_dim)
use_multi_head = True
if q.size() == 3 and k.size() == 3:
use_multi_head = False
q, k = q[:,None,...], k[:,None,...]
batch_size = q.shape[0]
nums_head = q.shape[1]
max_len = q.shape[2]
output_dim = q.shape[-1]
# (bs, head, max_len, output_dim)
pos_emb = sinusoidal_position_embedding(batch_size, nums_head, max_len, output_dim, q.device)
# cos_pos,sin_pos: (bs, head, max_len, output_dim)
# 看rope公式可知,相邻cos,sin之间是相同的,所以复制一遍。如(1,2,3)变成(1,1,2,2,3,3)
cos_pos = pos_emb[..., 1::2].repeat_interleave(2, dim=-1) # 将奇数列信息抽取出来也就是cos 拿出来并复制
sin_pos = pos_emb[..., ::2].repeat_interleave(2, dim=-1) # 将偶数列信息抽取出来也就是sin 拿出来并复制
# q,k: (bs, head, max_len, output_dim)
q2 = torch.stack([-q[..., 1::2], q[..., ::2]], dim=-1)
q2 = q2.reshape(q.shape) # reshape后就是正负交替了
# 更新qw, *对应位置相乘
q = q * cos_pos + q2 * sin_pos
k2 = torch.stack([-k[..., 1::2], k[..., ::2]], dim=-1)
k2 = k2.reshape(k.shape)
# 更新kw, *对应位置相乘
k = k * cos_pos + k2 * sin_pos
if not use_multi_head:
q, k = q[:,0], k[:,0]
return q, k
class SwiGLU(nn.Module):
def __init__(self, hidden_size: int, intermediate_size: int) -> None:
super().__init__()
self.w1 = nn.Linear(hidden_size, intermediate_size, bias=False)
self.w2 = nn.Linear(intermediate_size, hidden_size, bias=False)
self.w3 = nn.Linear(hidden_size, intermediate_size, bias=False)
def forward(self, x: torch.Tensor) -> torch.Tensor:
# x: (batch_size, seq_len, hidden_size)
# w1(x) -> (batch_size, seq_len, intermediate_size)
# w3(x) -> (batch_size, seq_len, intermediate_size)
# w2(*) -> (batch_size, seq_len, hidden_size)
return self.w2(F.silu(self.w1(x)) * self.w3(x))
class LayerNorm(nn.Module):
""" LayerNorm that supports two data formats: channels_last (default) or channels_first.
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with
shape (batch_size, height, width, channels) while channels_first corresponds to inputs
with shape (batch_size, channels, height, width).
"""
def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
super().__init__()
self.weight = nn.Parameter(torch.ones(normalized_shape))
self.bias = nn.Parameter(torch.zeros(normalized_shape))
self.eps = eps
self.data_format = data_format
if self.data_format not in ["channels_last", "channels_first"]:
raise NotImplementedError
self.normalized_shape = (normalized_shape, )
def forward(self, x):
if self.data_format == "channels_last":
return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
elif self.data_format == "channels_first":
u = x.mean(1, keepdim=True)
s = (x - u).pow(2).mean(1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.eps)
x = self.weight[:, None, None] * x + self.bias[:, None, None]
return x
class RMSNorm(nn.Module):
def __init__(self, hidden_size: int, eps: float = 1e-6, data_format="channels_first") -> None:
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(hidden_size))
self.data_format = data_format
def _norm(self, hidden_states):
if self.data_format == "channels_first":
variance = hidden_states.pow(2).mean(dim=(1), keepdim=True) # 在高和宽维度上计算均值
elif self.data_format == "channels_last":
variance = hidden_states.pow(2).mean(dim=-1, keepdim=True)
return hidden_states * torch.rsqrt(variance + self.eps)
def forward(self, hidden_states):
if self.data_format == "channels_first":
return self.weight[..., None, None] * self._norm(hidden_states.float()).type_as(hidden_states)
elif self.data_format == "channels_last":
return self.weight * self._norm(hidden_states.float()).type_as(hidden_states)
class GRN(nn.Module):
""" GRN (Global Response Normalization) layer
"""
def __init__(self, dim):
super().__init__()
self.gamma = nn.Parameter(torch.zeros(1, 1, 1, dim))
self.beta = nn.Parameter(torch.zeros(1, 1, 1, dim))
def forward(self, x):
Gx = torch.norm(x, p=2, dim=(1,2), keepdim=True)
Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-6)
return self.gamma * (x * Nx) + self.beta + x
class DUpsampling(nn.Module):
def __init__(self, inplanes, scale, pad=0):
super(DUpsampling, self).__init__()
self.conv1 = nn.Conv2d(inplanes, inplanes* scale * scale, kernel_size=1, padding = pad)
self.scale = scale
def forward(self, x):
x = self.conv1(x)
N, C, H, W = x.size()
# N, H, W, C
x_permuted = x.permute(0, 2, 3, 1)
# N, H, W*scale, C/scale
x_permuted = x_permuted.contiguous().view((N, H, W * self.scale, int(C / (self.scale))))
# N, W*scale,H, C/scale
x_permuted = x_permuted.permute(0, 2, 1, 3)
# N, W*scale,H*scale, C/(scale**2)
x_permuted = x_permuted.contiguous().view((N, W * self.scale, H * self.scale, int(C / (self.scale * self.scale))))
# N,C/(scale**2),W*scale,H*scale
x = x_permuted.permute(0, 3, 2, 1)
return x
class REsampling(nn.Module):
def __init__(self, scale):
super(REsampling, self).__init__()
self.scale = scale
def forward(self, x):
N, C, H, W = x.size()
# N, H, W, C
x_permuted = x.permute(0, 2, 3, 1)
# N, H, W*scale, C/scale
x_permuted = x_permuted.contiguous().view((N, H, W * self.scale, int(C / (self.scale))))
# N, W*scale,H, C/scale
x_permuted = x_permuted.permute(0, 2, 1, 3)
# N, W*scale,H*scale, C/(scale**2)
x_permuted = x_permuted.contiguous().view((N, W * self.scale, H * self.scale, int(C / (self.scale * self.scale))))
# N,C/(scale**2),W*scale,H*scale
x = x_permuted.permute(0, 3, 2, 1)
return x
class Dcrop(nn.Module):
def __init__(self,inplanes,cropscale=2):
super(Dcrop, self).__init__()
self.conv = nn.Conv2d(inplanes*cropscale*cropscale, inplanes*cropscale*cropscale, kernel_size=3, padding = 1)
self.cropscale = cropscale
def forward(self, x):
B,C,H,W = x.size()
x_permuted = x.permute(0, 2, 3, 1)
x_permuted = x_permuted.contiguous().view((B, H, W//self.cropscale, C*self.cropscale))
x_permuted = x_permuted.permute(0, 2, 1, 3)
x_permuted = x_permuted.contiguous().view((B, W//self.cropscale, H//self.cropscale, C*self.cropscale*self.cropscale))
x = x_permuted.permute(0, 3, 2, 1)
x = self.conv(x)+x
return x
def show_gray_images(images, m=8, alpha=3, cmap='coolwarm',save_path=None):
if len(images.size()) == 2:
plt.imshow(images, cmap=cmap)
plt.axis('off')
else:
n, h, w = images.shape
if n == 1:
plt.imshow(images[0], cmap=cmap)
plt.axis('off')
else:
if m > n: m = n
num_rows = (n + m - 1) // m
fig, axes = plt.subplots(num_rows, m, figsize=(m * 2*alpha, num_rows * 2*alpha))
plt.subplots_adjust(wspace=0.05, hspace=0.05)
for i in range(num_rows):
for j in range(m):
idx = i*m + j
if m == 1 or num_rows == 1:
axes[idx].imshow(images[idx], cmap=cmap)
axes[idx].axis('off')
elif idx < n:
axes[i, j].imshow(images[idx], cmap=cmap)
axes[i, j].axis('off')
if save_path is not None:
plt.savefig(save_path)
plt.close()
else:
plt.show()
|