File size: 20,283 Bytes
674d663
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
import torch
import torch.nn as nn
import pyrootutils
import torch.distributed as dist
import torch.nn.functional as F

pyrootutils.setup_root(__file__, indicator='.project-root', pythonpath=True)
from src.train.dist_utils import concat_all_gather


def cosine_loss(rec, target):
    target = target / target.norm(dim=-1, keepdim=True)
    rec = rec / rec.norm(dim=-1, keepdim=True)
    rec_loss = (1 - (target * rec).sum(-1)).mean()
    return rec_loss


def contrastive_loss(image_feats, text_feats, logit_scale):
    image_feats = image_feats.unsqueeze(1).contiguous()
    image_feats_all = concat_all_gather(image_feats)  # [batch_size*num_gpu, num_query_tokens, embed_dim]
    text_feats_all = concat_all_gather(text_feats)  # [batch_size*num_gpu, embed_dim]

    sim_q2t = torch.matmul(image_feats.unsqueeze(1), text_feats_all.unsqueeze(-1)).squeeze()
    # [batch_size, batch_size*num_gpu, num_query_tokens]

    # image-text similarity: aggregate across all query tokens
    # sim_i2t, _ = sim_q2t.max(-1)
    # sim_i2t = sim_q2t.mean(-1)
    sim_i2t = sim_q2t
    sim_i2t = sim_i2t / logit_scale

    # text-query similarity: [batch_size, batch_size*num_gpu, num_query_tokens]
    sim_t2q = torch.matmul(text_feats.unsqueeze(1).unsqueeze(1), image_feats_all.permute(0, 2, 1)).squeeze()

    # print(image_feats_all.shape, text_feat_all.shape, sim_q2t.shape, sim_t2q.shape)
    # text-image similarity: aggregate across all query tokens
    # sim_t2i, _ = sim_t2q.max(-1)
    # sim_t2i = sim_t2q.mean(-1)
    sim_t2i = sim_t2q
    sim_t2i = sim_t2i / logit_scale  # [batch_size, batch_size*num_gpu]

    rank = dist.get_rank()
    bs = image_feats.size(0)
    targets = torch.linspace(rank * bs, rank * bs + bs - 1, bs, dtype=int).to(image_feats.device)

    loss_itc = (F.cross_entropy(sim_i2t, targets, label_smoothing=0.1) +
                F.cross_entropy(sim_t2i, targets, label_smoothing=0.1)) / 2

    i2t_acc = (sim_i2t.argmax(-1) == targets).sum() / len(sim_i2t)
    t2i_acc = (sim_t2i.argmax(-1) == targets).sum() / len(sim_t2i)

    return loss_itc, i2t_acc, t2i_acc


class DiscreteModleOnlyDistill(nn.Module):

    def __init__(self,
                 qformer,
                 quantizer,
                 distiller=None,
                 loss_type='cosine',
                 scale_commit_loss=1.0,
                 freeze_qformer=False) -> None:
        super().__init__()
        self.qformer = qformer
        self.quantizer = quantizer
        self.distiller = distiller
        self.loss_type = loss_type
        self.scale_commit_loss = scale_commit_loss

        self.freeze_qformer = freeze_qformer

        if freeze_qformer:
            self.qformer.requires_grad_(False)

    def forward(self, image_embeds, input_ids=None, text_attention_mask=None, text_embeds=None):
        if self.freeze_qformer:
            with torch.no_grad():
                qforemr_embeds = self.qformer(image_embeds=image_embeds)
        else:
            qforemr_embeds = self.qformer(image_embeds=image_embeds)

        quantizer_output = self.quantizer(qforemr_embeds)
        recon_embeds = self.distiller(quantizer_output['quant_embeds'])

        if self.loss_type == 'cosine':
            distill_loss = cosine_loss(recon_embeds, image_embeds)
        else:
            raise NotImplementedError

        total_loss = distill_loss + self.scale_commit_loss * \
                     quantizer_output['commit_loss']

        return {
            'total_loss': total_loss,
            'distill_loss': distill_loss,
            'commit_loss': quantizer_output['commit_loss'],
            'indices': quantizer_output['indices']
        }

    def encode_image_embeds(self, image_embeds):
        qforemr_embeds = self.qformer(image_embeds=image_embeds)
        quantizer_output = self.quantizer(qforemr_embeds)

        output_embeds = quantizer_output['quant_embeds']
        if self.distiller is not None:
            output_embeds = self.distiller(output_embeds)
        return output_embeds

    @classmethod
    def from_pretrained(cls, qformer, quantizer, distiller=None, pretrained_model_path=None, **kwargs):
        model = cls(qformer=qformer, quantizer=quantizer, distiller=distiller, **kwargs)
        if pretrained_model_path is not None:
            ckpt = torch.load(pretrained_model_path, map_location='cpu')
            missing, unexpected = model.load_state_dict(ckpt, strict=False)
            print('missing keys: ', len(missing), 'unexpected keys:', len(unexpected))
        return model


class DiscreteModleIdentity(nn.Module):

    def __init__(self) -> None:
        super().__init__()
        self.model = nn.Identity()

    def forward(self, image_embeds, input_ids=None, text_attention_mask=None, text_embeds=None):
        return

    def encode_image_embeds(self, image_embeds):
        return self.model(image_embeds)


class DiscreteModleStageOneContrastive(nn.Module):

    def __init__(self, qformer, quantizer=None, distiller=None, projection_dim=1024,
                 image_cls_token_type='last') -> None:
        super().__init__()
        self.qformer = qformer
        self.quantizer = quantizer
        self.distiller = distiller
        self.image_cls_token_type = image_cls_token_type
        self.logit_scale = nn.Parameter(0.07 * torch.ones([]))
        self.image_proj = nn.Linear(qformer.perceiver.config.projection_dim, projection_dim, bias=False)
        self.text_proj = nn.Linear(qformer.perceiver.config.projection_dim, projection_dim, bias=False)

    def forward(self, image_embeds, input_ids=None, text_attention_mask=None, text_embeds=None):
        image_embeds = self.qformer(image_embeds=image_embeds)
        if self.image_cls_token_type == 'last':
            image_embeds = image_embeds[:, -1, :]
        else:
            raise NotImplementedError

        text_embeds = self.qformer(input_ids=input_ids, text_attention_mask=text_attention_mask)
        text_embeds = text_embeds[:, 0, :]

        image_embeds = F.normalize(self.image_proj(image_embeds), dim=-1)
        text_embeds = F.normalize(self.text_proj(text_embeds), dim=-1)

        contrast_loss, i2t_acc, t2i_acc = contrastive_loss(image_feats=image_embeds,
                                                           text_feats=text_embeds,
                                                           logit_scale=self.logit_scale)

        return {
            'total_loss': contrast_loss,
            'i2t_acc': i2t_acc,
            't2i_acc': t2i_acc,
        }

    def encode_image_embeds(self, image_embeds):
        image_embeds = self.qformer(image_embeds=image_embeds)

        return image_embeds

    @classmethod
    def from_pretrained(cls, qformer, quantizer, distiller=None, pretrained_model_path=None, **kwargs):
        model = cls(qformer=qformer, quantizer=quantizer, distiller=distiller, **kwargs)
        if pretrained_model_path is not None:
            ckpt = torch.load(pretrained_model_path, map_location='cpu')
            missing, unexpected = model.load_state_dict(ckpt, strict=False)
            print('missing keys: ', len(missing), 'unexpected keys:', len(unexpected))
        return model


class DiscreteModleStageTwoContrastiveDistill(nn.Module):

    def __init__(self,
                 qformer,
                 quantizer=None,
                 distiller=None,
                 contrast_head=None,
                 projection_dim=1024,
                 distill_loss_type='cosine',
                 freeze_qformer=True,
                 image_cls_token_type='last',
                 scale_commit_loss=1.0,
                 scale_contrast_loss=1.0,
                 scale_distill_loss=1.0) -> None:
        super().__init__()
        self.qformer = qformer
        self.quantizer = quantizer
        self.distiller = distiller
        self.contrast_head = contrast_head
        self.distill_loss_type = distill_loss_type
        self.image_cls_token_type = image_cls_token_type
        if self.contrast_head is not None:
            self.logit_scale = nn.Parameter(0.07 * torch.ones([]))
            self.image_proj = nn.Linear(contrast_head.perceiver.config.projection_dim, projection_dim, bias=False)
            self.text_proj = nn.Linear(contrast_head.perceiver.config.projection_dim, projection_dim, bias=False)

        self.freeze_qformer = freeze_qformer
        if freeze_qformer:
            self.qformer.requires_grad_(False)

        self.scale_commit_loss = scale_commit_loss
        self.scale_contrast_loss = scale_contrast_loss
        self.scale_distill_loss = scale_distill_loss

    def forward(self, image_embeds, input_ids=None, text_attention_mask=None, text_embeds=None):
        if self.freeze_qformer:
            with torch.no_grad():
                qforemr_embeds = self.qformer(image_embeds=image_embeds)
        else:
            qforemr_embeds = self.qformer(image_embeds=image_embeds)

        quantizer_output = self.quantizer(qforemr_embeds)

        output_state = {}
        output_state['indices'] = quantizer_output['indices']
        output_state['commit_loss'] = quantizer_output['commit_loss']
        output_state['total_loss'] = self.scale_commit_loss * quantizer_output['commit_loss']
        if self.distiller is not None:
            recon_embeds = self.distiller(quantizer_output['quant_embeds'])

            if self.distill_loss_type == 'cosine':
                distill_loss = cosine_loss(recon_embeds, image_embeds)
            else:
                raise NotImplementedError

            output_state['distill_loss'] = distill_loss
            output_state['total_loss'] += self.scale_distill_loss * distill_loss

        if self.contrast_head is not None:
            text_embeds = self.qformer(input_ids=input_ids, text_attention_mask=text_attention_mask)
            text_embeds = text_embeds[:, 0, :]

            image_embeds = self.contrast_head(quantizer_output['quant_embeds'])
            if self.image_cls_token_type == 'last':
                image_embeds = image_embeds[:, -1, :]
            else:
                raise NotImplementedError

            image_embeds = F.normalize(self.image_proj(image_embeds), dim=-1)
            text_embeds = F.normalize(self.text_proj(text_embeds), dim=-1)

            contrast_loss, i2t_acc, t2i_acc = contrastive_loss(image_feats=image_embeds,
                                                               text_feats=text_embeds,
                                                               logit_scale=self.logit_scale)
            output_state['contrast_loss'] = contrast_loss
            output_state['total_loss'] += self.scale_contrast_loss * contrast_loss
            output_state['i2t_acc'] = i2t_acc
            output_state['t2i_acc'] = t2i_acc

        return output_state

    def encode_image_embeds(self, image_embeds):
        pass

    @classmethod
    def from_pretrained(cls, qformer, quantizer, distiller=None, contrast_head=None, pretrained_model_path=None,
                        **kwargs):
        model = cls(qformer=qformer, quantizer=quantizer, distiller=distiller, contrast_head=contrast_head, **kwargs)
        if pretrained_model_path is not None:
            ckpt = torch.load(pretrained_model_path, map_location='cpu')
            missing, unexpected = model.load_state_dict(ckpt, strict=False)
            print('missing keys: ', len(missing), 'unexpected keys:', len(unexpected))
        return model


class DiscreteModleDistillWithDoubleContrastive(nn.Module):

    def __init__(
            self,
            qformer,
            quantizer=None,
            distiller=None,
            contrast_head=None,
            projection_dim=1024,
            distill_loss_type='cosine',
            share_contrast_head=True,  # share contrastive head with distiller
            quantize_cls_token=False,
            rec_qformer=False,
            has_contrast=False,
            freeze_qformer=False,
            scale_commit_loss=1.0,
            scale_contrast_loss=1.0,
            scale_distill_loss=1.0) -> None:
        super().__init__()
        self.qformer = qformer
        self.quantizer = quantizer
        self.distiller = distiller
        self.contrast_head = contrast_head
        self.distill_loss_type = distill_loss_type
        self.quantize_cls_token = quantize_cls_token

        self.rec_qformer = rec_qformer
        self.has_contrast = has_contrast

        if freeze_qformer:
            self.qformer.requires_grad_(False)
        else:
            self.logit_scale_qformer = nn.Parameter(0.07 * torch.ones([]))
            self.image_proj_qformer = nn.Linear(qformer.perceiver.config.projection_dim, projection_dim, bias=False)
            self.text_proj_qformer = nn.Linear(qformer.perceiver.config.projection_dim, projection_dim, bias=False)
            self.cls_norm_qformer = nn.LayerNorm(qformer.perceiver.config.projection_dim)

        if self.contrast_head is not None:
            self.logit_scale_head = nn.Parameter(0.07 * torch.ones([]))
            self.image_proj_head = nn.Linear(contrast_head.perceiver.config.projection_dim, projection_dim, bias=False)
            self.text_proj_head = nn.Linear(qformer.perceiver.config.projection_dim, projection_dim, bias=False)
            self.cls_norm_head = nn.LayerNorm(contrast_head.perceiver.config.projection_dim)

        if share_contrast_head and distiller is not None:
            self.logit_scale_head = nn.Parameter(0.07 * torch.ones([]))
            self.image_proj_head = nn.Linear(distiller.perceiver.config.projection_dim, projection_dim, bias=False)
            self.text_proj_head = nn.Linear(qformer.perceiver.config.projection_dim, projection_dim, bias=False)
            self.cls_norm_head = nn.LayerNorm(distiller.perceiver.config.projection_dim)

        self.scale_commit_loss = scale_commit_loss
        self.scale_contrast_loss = scale_contrast_loss
        self.scale_distill_loss = scale_distill_loss
        self.share_contrast_head = share_contrast_head
        self.freeze_qformer = freeze_qformer
        assert int(self.share_contrast_head) + int(contrast_head is not None) <= 1

    def forward(self, image_embeds, input_ids=None, text_attention_mask=None, text_embeds=None):

        if self.freeze_qformer:
            with torch.no_grad():
                qforemr_embeds = self.qformer(image_embeds=image_embeds)
        else:
            qforemr_embeds = self.qformer(image_embeds=image_embeds)
        qforemr_cls_embeds = qforemr_embeds[:, -1, :]

        if not self.quantize_cls_token:
            qforemr_embeds = qforemr_embeds[:, :-1, :]

        if self.has_contrast:
            text_embeds = self.qformer(input_ids=input_ids, text_attention_mask=text_attention_mask)
            text_cls_embeds = text_embeds[:, 0, :]

        output_state = {}
        output_state['total_loss'] = 0.0

        if not self.freeze_qformer and self.has_contrast:
            qforemr_cls_embeds = self.cls_norm_qformer(qforemr_cls_embeds)
            qformer_image_embeds = F.normalize(self.image_proj_qformer(qforemr_cls_embeds), dim=-1)
            qformer_text_embeds = F.normalize(self.text_proj_qformer(text_cls_embeds), dim=-1)

            qformer_contrast_loss, \
                qformer_i2t_acc, \
                qformer_t2i_acc = contrastive_loss(image_feats=qformer_image_embeds,
                                                    text_feats=qformer_text_embeds,
                                                    logit_scale=self.logit_scale_qformer)
            output_state['qformer_contrast_loss'] = qformer_contrast_loss
            output_state['total_loss'] += self.scale_contrast_loss * qformer_contrast_loss
            output_state['qformer_i2t_acc'] = qformer_i2t_acc
            output_state['qformer_t2i_acc'] = qformer_t2i_acc

        if self.quantizer is not None and self.distiller is not None:
            quantizer_output = self.quantizer(qforemr_embeds)

            recon_embeds = self.distiller(quantizer_output['quant_embeds'])
            if self.share_contrast_head:
                contrast_head_cls_embeds = recon_embeds[:, -1, :]
                contrast_head_cls_embeds = self.cls_norm_head(contrast_head_cls_embeds)
                recon_embeds = recon_embeds[:, :-1, :]
            if self.contrast_head is not None:
                contrast_head_embeds = self.contrast_head(quantizer_output['quant_embeds'])
                contrast_head_cls_embeds = contrast_head_embeds[:, -1, :]
                contrast_head_cls_embeds = self.cls_norm_head(contrast_head_cls_embeds)

            output_state['indices'] = quantizer_output['indices']
            output_state['commit_loss'] = quantizer_output['commit_loss']
            output_state['total_loss'] += self.scale_commit_loss * quantizer_output['commit_loss']

            if self.rec_qformer:
                target_embeds = qforemr_embeds
            else:
                target_embeds = image_embeds

            if self.distill_loss_type == 'cosine':
                distill_loss = cosine_loss(recon_embeds, target_embeds)
            else:
                raise NotImplementedError

            output_state['distill_loss'] = distill_loss
            output_state['total_loss'] += self.scale_distill_loss * distill_loss

            if self.contrast_head is not None or self.share_contrast_head:
                head_image_embeds = F.normalize(self.image_proj_head(contrast_head_cls_embeds), dim=-1)
                head_text_embeds = F.normalize(self.text_proj_head(text_cls_embeds), dim=-1)

                head_contrast_loss, head_i2t_acc, head_t2i_acc = contrastive_loss(image_feats=head_image_embeds,
                                                                                  text_feats=head_text_embeds,
                                                                                  logit_scale=self.logit_scale_head)
                output_state['head_contrast_loss'] = head_contrast_loss
                output_state['total_loss'] += self.scale_contrast_loss * head_contrast_loss
                output_state['head_i2t_acc'] = head_i2t_acc
                output_state['head_t2i_acc'] = head_t2i_acc

        return output_state

    def encode_image_embeds(self, image_embeds):
        qforemr_embeds = self.qformer(image_embeds=image_embeds)
        return qforemr_embeds

    @classmethod
    def from_pretrained(cls, qformer, quantizer=None, distiller=None, contrast_head=None, pretrained_model_path=None,
                        **kwargs):
        model = cls(qformer=qformer, quantizer=quantizer, distiller=distiller, contrast_head=contrast_head, **kwargs)
        if pretrained_model_path is not None:
            ckpt = torch.load(pretrained_model_path, map_location='cpu')
            missing, unexpected = model.load_state_dict(ckpt, strict=False)
            print('missing keys: ', len(missing), 'unexpected keys:', len(unexpected))
        return model

    @classmethod
    def from_pretrained_stage1_yuying(cls,
                                      qformer,
                                      quantizer=None,
                                      distiller=None,
                                      contrast_head=None,
                                      pretrained_model_path=None,
                                      **kwargs):
        model = cls(qformer=qformer, quantizer=quantizer, distiller=distiller, contrast_head=contrast_head, **kwargs)
        if pretrained_model_path is not None:
            ckpt = torch.load(pretrained_model_path, map_location='cpu')
            ckpt = ckpt['model']

            new_ckpt = {}
            new_ckpt['qformer.embed_module.query'] = ckpt['query_tokens'].squeeze(0)
            new_ckpt['qformer.norm.weight'] = ckpt['ln_vision.weight']
            new_ckpt['qformer.norm.bias'] = ckpt['ln_vision.bias']

            for key in ckpt.keys():
                if key.startswith('Qformer'):
                    new_key = key.replace('Qformer', 'qformer.perceiver')
                    new_ckpt[new_key] = ckpt[key]
            del ckpt
            missing, unexpected = model.load_state_dict(new_ckpt, strict=False)
            print('missing keys: ', len(missing), 'unexpected keys:', len(unexpected))
            print(missing)
            print(unexpected)
        return model