Spaces:
Sleeping
Sleeping
import argparse | |
import datetime | |
import json | |
import math | |
import os | |
import sys | |
import time | |
from glob import glob | |
from pathlib import Path | |
from typing import Optional | |
import cv2 | |
import numpy as np | |
import torch | |
import torchvision | |
from einops import rearrange, repeat | |
from fire import Fire | |
from omegaconf import OmegaConf | |
from PIL import Image | |
from torchvision.transforms import CenterCrop, Compose, Resize, ToTensor | |
import tempfile | |
sys.path.insert(1, os.path.join(sys.path[0], '..')) | |
from sgm.util import default, instantiate_from_config | |
def to_relative_RT2(org_pose, keyframe_idx=0, keyframe_zero=False): | |
org_pose = org_pose.reshape(-1, 3, 4) # [t, 3, 4] | |
R_dst = org_pose[:, :, :3] | |
T_dst = org_pose[:, :, 3:] | |
R_src = R_dst[keyframe_idx: keyframe_idx+1].repeat(org_pose.shape[0], axis=0) # [t, 3, 3] | |
T_src = T_dst[keyframe_idx: keyframe_idx+1].repeat(org_pose.shape[0], axis=0) | |
R_src_inv = R_src.transpose(0, 2, 1) # [t, 3, 3] | |
R_rel = R_dst @ R_src_inv # [t, 3, 3] | |
T_rel = T_dst - R_rel@T_src | |
RT_rel = np.concatenate([R_rel, T_rel], axis=-1) # [t, 3, 4] | |
RT_rel = RT_rel.reshape(-1, 12) # [t, 12] | |
if keyframe_zero: | |
RT_rel[keyframe_idx] = np.zeros_like(RT_rel[keyframe_idx]) | |
return RT_rel | |
def build_model(config, ckpt, device, num_frames, num_steps): | |
num_frames = default(num_frames, 14) | |
num_steps = default(num_steps, 25) | |
model_config = default(config, "configs/inference/config_motionctrl_cmcm.yaml") | |
print(f"Loading model from {ckpt}") | |
model, filter = load_model( | |
model_config, | |
ckpt, | |
device, | |
num_frames, | |
num_steps, | |
) | |
model.eval() | |
return model | |
def motionctrl_sample( | |
model, | |
image: Image = None, # Can either be image file or folder with image files | |
RT: np.ndarray = None, | |
num_frames: Optional[int] = None, | |
fps_id: int = 6, | |
motion_bucket_id: int = 127, | |
cond_aug: float = 0.02, | |
seed: int = 23, | |
decoding_t: int = 1, # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary. | |
save_fps: int = 10, | |
sample_num: int = 1, | |
device: str = "cuda", | |
): | |
""" | |
Simple script to generate a single sample conditioned on an image `input_path` or multiple images, one for each | |
image file in folder `input_path`. If you run out of VRAM, try decreasing `decoding_t`. | |
""" | |
torch.manual_seed(seed) | |
w, h = image.size | |
# RT: [t, 3, 4] | |
# RT = RT.reshape(-1, 3, 4) # [t, 3, 4] | |
# adaptive to different spatial ratio | |
# base_len = min(w, h) * 0.5 | |
# K = np.array([[w/base_len, 0, w/base_len], | |
# [0, h/base_len, h/base_len], | |
# [0, 0, 1]]) | |
# for i in range(RT.shape[0]): | |
# RT[i,:,:] = np.dot(K, RT[i,:,:]) | |
RT = to_relative_RT2(RT) # [t, 12] | |
RT = torch.tensor(RT).float().to(device) # [t, 12] | |
RT = RT.unsqueeze(0).repeat(2,1,1) | |
if h % 64 != 0 or w % 64 != 0: | |
width, height = map(lambda x: x - x % 64, (w, h)) | |
image = image.resize((width, height)) | |
print( | |
f"WARNING: Your image is of size {h}x{w} which is not divisible by 64. We are resizing to {height}x{width}!" | |
) | |
image = ToTensor()(image) | |
image = image * 2.0 - 1.0 | |
image = image.unsqueeze(0).to(device) | |
H, W = image.shape[2:] | |
assert image.shape[1] == 3 | |
F = 8 | |
C = 4 | |
shape = (num_frames, C, H // F, W // F) | |
if motion_bucket_id > 255: | |
print( | |
"WARNING: High motion bucket! This may lead to suboptimal performance." | |
) | |
if fps_id < 5: | |
print("WARNING: Small fps value! This may lead to suboptimal performance.") | |
if fps_id > 30: | |
print("WARNING: Large fps value! This may lead to suboptimal performance.") | |
value_dict = {} | |
value_dict["motion_bucket_id"] = motion_bucket_id | |
value_dict["fps_id"] = fps_id | |
value_dict["cond_aug"] = cond_aug | |
value_dict["cond_frames_without_noise"] = image | |
value_dict["cond_frames"] = image + cond_aug * torch.randn_like(image) | |
with torch.no_grad(): | |
with torch.autocast(device): | |
batch, batch_uc = get_batch( | |
get_unique_embedder_keys_from_conditioner(model.conditioner), | |
value_dict, | |
[1, num_frames], | |
T=num_frames, | |
device=device, | |
) | |
c, uc = model.conditioner.get_unconditional_conditioning( | |
batch, | |
batch_uc=batch_uc, | |
force_uc_zero_embeddings=[ | |
"cond_frames", | |
"cond_frames_without_noise", | |
], | |
) | |
for k in ["crossattn", "concat"]: | |
uc[k] = repeat(uc[k], "b ... -> b t ...", t=num_frames) | |
uc[k] = rearrange(uc[k], "b t ... -> (b t) ...", t=num_frames) | |
c[k] = repeat(c[k], "b ... -> b t ...", t=num_frames) | |
c[k] = rearrange(c[k], "b t ... -> (b t) ...", t=num_frames) | |
additional_model_inputs = {} | |
additional_model_inputs["image_only_indicator"] = torch.zeros( | |
2, num_frames | |
).to(device) | |
#additional_model_inputs["image_only_indicator"][:,0] = 1 | |
additional_model_inputs["num_video_frames"] = batch["num_video_frames"] | |
additional_model_inputs["RT"] = RT.clone() | |
def denoiser(input, sigma, c): | |
return model.denoiser( | |
model.model, input, sigma, c, **additional_model_inputs | |
) | |
results = [] | |
for j in range(sample_num): | |
randn = torch.randn(shape, device=device) | |
samples_z = model.sampler(denoiser, randn, cond=c, uc=uc) | |
model.en_and_decode_n_samples_a_time = decoding_t | |
samples_x = model.decode_first_stage(samples_z) | |
samples = torch.clamp((samples_x + 1.0) / 2.0, min=0.0, max=1.0) # [1*t, c, h, w] | |
samples = samples.data.cpu() | |
results.append(samples) | |
samples = torch.stack(results, dim=0) # [sample_num, t, c, h, w] | |
# samples = samples.data.cpu() | |
video_path = tempfile.NamedTemporaryFile(suffix='.mp4').name | |
save_results(samples, video_path, fps=save_fps) | |
return video_path | |
def save_results(resutls, filename, fps=10): | |
video = resutls.permute(1, 0, 2, 3, 4) # [t, sample_num, c, h, w] | |
frame_grids = [torchvision.utils.make_grid(framesheet, nrow=int(video.shape[1])) for framesheet in video] #[3, 1*h, n*w] | |
grid = torch.stack(frame_grids, dim=0) # stack in temporal dim [t, 3, n*h, w] | |
# already in [0,1] | |
grid = (grid * 255).to(torch.uint8).permute(0, 2, 3, 1) | |
torchvision.io.write_video(filename, grid, fps=fps, video_codec='h264', options={'crf': '10'}) | |
def get_unique_embedder_keys_from_conditioner(conditioner): | |
return list(set([x.input_key for x in conditioner.embedders])) | |
def get_batch(keys, value_dict, N, T, device): | |
batch = {} | |
batch_uc = {} | |
for key in keys: | |
if key == "fps_id": | |
batch[key] = ( | |
torch.tensor([value_dict["fps_id"]]) | |
.to(device) | |
.repeat(int(math.prod(N))) | |
) | |
elif key == "motion_bucket_id": | |
batch[key] = ( | |
torch.tensor([value_dict["motion_bucket_id"]]) | |
.to(device) | |
.repeat(int(math.prod(N))) | |
) | |
elif key == "cond_aug": | |
batch[key] = repeat( | |
torch.tensor([value_dict["cond_aug"]]).to(device), | |
"1 -> b", | |
b=math.prod(N), | |
) | |
elif key == "cond_frames": | |
batch[key] = repeat(value_dict["cond_frames"], "1 ... -> b ...", b=N[0]) | |
elif key == "cond_frames_without_noise": | |
batch[key] = repeat( | |
value_dict["cond_frames_without_noise"], "1 ... -> b ...", b=N[0] | |
) | |
else: | |
batch[key] = value_dict[key] | |
if T is not None: | |
batch["num_video_frames"] = T | |
for key in batch.keys(): | |
if key not in batch_uc and isinstance(batch[key], torch.Tensor): | |
batch_uc[key] = torch.clone(batch[key]) | |
return batch, batch_uc | |
def load_model( | |
config: str, | |
ckpt: str, | |
device: str, | |
num_frames: int, | |
num_steps: int, | |
): | |
config = OmegaConf.load(config) | |
config.model.params.ckpt_path = ckpt | |
if device == "cuda": | |
config.model.params.conditioner_config.params.emb_models[ | |
0 | |
].params.open_clip_embedding_config.params.init_device = device | |
config.model.params.sampler_config.params.num_steps = num_steps | |
config.model.params.sampler_config.params.guider_config.params.num_frames = ( | |
num_frames | |
) | |
model = instantiate_from_config(config.model) | |
model = model.to(device).eval() | |
filter = None #DeepFloydDataFiltering(verbose=False, device=device) | |
return model, filter | |