import streamlit as st import torch from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "codellama/CodeLlama-7b-Python-hf" model = AutoModelForCausalLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) device = torch.device("cuda" if torch.cuda.is_available() else 'cpu') model = model.to(device) # prompt = st.text_area("Enter your prompt:") # def translate_text(text, source_lang, target_lang): # tokenizer.src_lang = source_lang # encoded_text = tokenizer(text, return_tensors="pt").to(device) # generated_tokens = model.generate(**encoded_text, forced_bos_token_id=tokenizer.lang_code_to_id[target_lang]) # #Decode the output # translated_text = tokenizer.decode(generated_tokens[0], skip_special_tokens=True) # return translated_text st.markdown("### Python Code Helper") # source_language = '' # target_language = '' # source = st.sidebar.selectbox('Source Language', languages) # if source: # source_language = lang_dict.get(source) # st.write(source_language) # target = st.sidebar.selectbox('Target Language', languages) # if target: # target_language = lang_dict.get(target) # st.write(target_language) with st.form(key="myForm"): prompt = st.text_area("Enter your Prompt") submit = st.form_submit_button("Submit", type='primary') if submit and prompt: with st.spinner("Generating Response"): response = model.invoke(prompt) st.write(response)