Spaces:
Runtime error
Runtime error
Upload folder using huggingface_hub
Browse files- README.md +2 -8
- gradio_app.py +70 -0
README.md
CHANGED
|
@@ -1,12 +1,6 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
|
| 4 |
-
colorFrom: green
|
| 5 |
-
colorTo: red
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 3.44.4
|
| 8 |
-
app_file: app.py
|
| 9 |
-
pinned: false
|
| 10 |
---
|
| 11 |
-
|
| 12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 1 |
---
|
| 2 |
+
title: votum-demo
|
| 3 |
+
app_file: gradio_app.py
|
|
|
|
|
|
|
| 4 |
sdk: gradio
|
| 5 |
sdk_version: 3.44.4
|
|
|
|
|
|
|
| 6 |
---
|
|
|
|
|
|
gradio_app.py
ADDED
|
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# %%
|
| 2 |
+
|
| 3 |
+
from threading import Thread
|
| 4 |
+
|
| 5 |
+
import gradio as gr
|
| 6 |
+
# import torch
|
| 7 |
+
from text_generation import Client, InferenceAPIClient
|
| 8 |
+
from transformers import (AutoModelForCausalLM, AutoModelForSeq2SeqLM,
|
| 9 |
+
AutoTokenizer, BitsAndBytesConfig,
|
| 10 |
+
TextIteratorStreamer)
|
| 11 |
+
|
| 12 |
+
client = Client("http://20.83.177.108:8080")
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
# text = ""
|
| 16 |
+
# for response in client.generate_stream("What is Deep Learning?", max_new_tokens=20):
|
| 17 |
+
# if not response.token.special:
|
| 18 |
+
# text += response.token.text
|
| 19 |
+
# print(text)
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def run_generation(user_text, top_p, temperature, top_k, max_new_tokens):
|
| 24 |
+
# Get the model and tokenizer, and tokenize the user text.
|
| 25 |
+
user_text = f"""You are an expert legal assistant with extensive knowledge about Indian law. Your task is to respond to the given query in a consice and factually correct manner. Also mention the relevant sections of the law wherever applicable.
|
| 26 |
+
### Input: {user_text}
|
| 27 |
+
### Response: """
|
| 28 |
+
|
| 29 |
+
text = ""
|
| 30 |
+
for response in client.generate_stream(user_text, max_new_tokens=max_new_tokens,repetition_penalty=1.05):
|
| 31 |
+
if not response.token.special:
|
| 32 |
+
text += response.token.text
|
| 33 |
+
yield text
|
| 34 |
+
|
| 35 |
+
return text
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def reset_textbox():
|
| 39 |
+
return gr.update(value='')
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
with gr.Blocks() as demo:
|
| 43 |
+
with gr.Row():
|
| 44 |
+
with gr.Column(scale=4):
|
| 45 |
+
user_text = gr.Textbox(
|
| 46 |
+
placeholder="What is the punishment for taking dowry. explain in detail.",
|
| 47 |
+
label="Question"
|
| 48 |
+
)
|
| 49 |
+
model_output = gr.Textbox(label="AI Response", lines=10, interactive=False)
|
| 50 |
+
button_submit = gr.Button(value="Submit")
|
| 51 |
+
|
| 52 |
+
with gr.Column(scale=1):
|
| 53 |
+
max_new_tokens = gr.Slider(
|
| 54 |
+
minimum=1, maximum=1000, value=250, step=10, interactive=True, label="Max New Tokens",
|
| 55 |
+
)
|
| 56 |
+
top_p = gr.Slider(
|
| 57 |
+
minimum=0.05, maximum=1.0, value=0.95, step=0.05, interactive=True, label="Top-p (nucleus sampling)",
|
| 58 |
+
)
|
| 59 |
+
top_k = gr.Slider(
|
| 60 |
+
minimum=1, maximum=50, value=50, step=1, interactive=True, label="Top-k",
|
| 61 |
+
)
|
| 62 |
+
temperature = gr.Slider(
|
| 63 |
+
minimum=0.1, maximum=1.0, value=0.8, step=0.1, interactive=True, label="Temperature",
|
| 64 |
+
)
|
| 65 |
+
|
| 66 |
+
user_text.submit(run_generation, [user_text, top_p, temperature, top_k, max_new_tokens], model_output)
|
| 67 |
+
button_submit.click(run_generation, [user_text, top_p, temperature, top_k, max_new_tokens], model_output)
|
| 68 |
+
|
| 69 |
+
demo.queue(max_size=32).launch(enable_queue=True,share=True)
|
| 70 |
+
|