from diffusers import DiffusionPipeline, LCMScheduler import gradio as gr pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0").to("cuda") pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) pipe.load_lora_weights("latent-consistency/lcm-lora-sdxl") def generate_images(prompt, batch_size): images = [] for _ in range(batch_size): results = pipe( prompt=prompt, num_inference_steps=4, guidance_scale=1.4, ) images.append(results.images[0]) return images iface = gr.Interface( fn=generate_images, inputs=[ gr.Textbox(label="Prompt"), gr.Slider(label="Batch Size", minimum=1, maximum=12, step=1, value=1) ], outputs=gr.Gallery(label="Generated Images"), title="SuperFast SDXL Generation." ) iface.launch()