from diffusers import DiffusionPipeline, LCMScheduler import gradio as gr import torch pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16) pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) pipe.load_lora_weights("latent-consistency/lcm-lora-sdxl") pipe = pipe.to("cpu") def generate_images(prompt, batch_size): images = [] for _ in range(batch_size): results = pipe( prompt=prompt, num_inference_steps=4, guidance_scale=0.0, ) images.append(results.images[0]) return images iface = gr.Interface( fn=generate_images, inputs=[ gr.Textbox(label="Prompt"), gr.Slider(label="Number of Images", minimum=1, maximum=12, step=1, value=1) ], outputs=gr.Gallery(label="Generated Images"), title="SuperFast SDXL Image Generation" ) iface.launch()