import gradio as gr from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, pipeline, AutoConfig from huggingface_hub import cached_download, hf_hub_url, list_models import requests import json import os import matplotlib.pyplot as plt from io import BytesIO import base64 # Choose your backend (PyTorch, TensorFlow, or Flax) import torch # If using PyTorch # Function to fetch open-weight LLM models def fetch_open_weight_models(): models = list_models(filter="open-weight", sort="downloads", limit=10) return [model["id"] for model in models] # Function to prune a model using the "merge-kit" approach def prune_model(llm_model_name, target_size, output_dir): # Load the LLM model and tokenizer llm_tokenizer = AutoTokenizer.from_pretrained(llm_model_name) llm_model = AutoModelForSeq2SeqLM.from_pretrained(llm_model_name) # Get the model config config = AutoConfig.from_pretrained(llm_model_name) # Calculate the target number of parameters target_num_parameters = int(config.num_parameters * (target_size / 100)) # Use merge-kit to prune the model pruned_model = merge_kit_prune(llm_model, target_num_parameters) # Save the pruned model pruned_model.save_pretrained(output_dir) # Create a visualization fig, ax = plt.subplots(figsize=(10, 5)) ax.bar(["Original", "Pruned"], [config.num_parameters, pruned_model.num_parameters]) ax.set_ylabel("Number of Parameters") ax.set_title("Model Size Comparison") buf = BytesIO() fig.savefig(buf, format="png") buf.seek(0) image_base64 = base64.b64encode(buf.read()).decode("utf-8") return f"Pruned model saved to {output_dir}", f"data:image/png;base64,{image_base64}" # Merge-kit Pruning Function def merge_kit_prune(model: PreTrainedModel, target_num_parameters: int) -> PreTrainedModel: """Prunes a model using a merge-kit approach. Args: model (PreTrainedModel): The model to be pruned. target_num_parameters (int): The target number of parameters after pruning. Returns: PreTrainedModel: The pruned model. """ # Define the pruning method pruning_method = "unstructured" # Calculate the pruning amount amount = 1 - (target_num_parameters / model.num_parameters) # Prune the model using the selected method for name, module in model.named_modules(): if isinstance(module, (torch.nn.Linear, torch.nn.Conv2d)): prune.random_unstructured(module, name="weight", amount=amount) # Remove the pruned weights for name, module in model.named_modules(): if isinstance(module, (torch.nn.Linear, torch.nn.Conv2d)): prune.remove(module, name="weight") return model # Function to create a Gradio interface def create_interface(): with gr.Blocks() as demo: gr.Markdown("## Create a Smaller LLM") # Fetch open-weight models from Hugging Face available_models = gr.Dropdown( label="Choose a Large Language Model", choices=fetch_open_weight_models(), interactive=True, ) # Input for target model size target_size = gr.Slider( label="Target Model Size (%)", minimum=1, maximum=100, step=1, value=50, interactive=True, ) # Output for pruning status pruning_status = gr.Textbox(label="Pruning Status") # Output for saving the model save_model_path = gr.Textbox(label="Save Model Path", placeholder="Path to save the pruned model", interactive=True) # Button to start pruning prune_button = gr.Button("Prune Model") # Output for visualization visualization = gr.Image(label="Model Size Comparison") # Connect components prune_button.click( fn=prune_model, inputs=[available_models, target_size, save_model_path], outputs=[pruning_status, visualization], ) # Example usage of the pruned model (optional) text_input = gr.Textbox(label="Input Text") text_output = gr.Textbox(label="Generated Text") # Generate text button generate_button = gr.Button("Generate Text") def generate_text(text, model_path): # Load the pruned model and tokenizer tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForSeq2SeqLM.from_pretrained(model_path) # Use the pipeline for text generation generator = pipeline("text-generation", model=model, tokenizer=tokenizer) generated_text = generator(text, max_length=50, num_beams=5, num_return_sequences=1)[0]["generated_text"] return generated_text generate_button.click(fn=generate_text, inputs=[text_input, save_model_path], outputs=text_output) return demo # Create and launch the Gradio interface demo = create_interface() demo.launch(share=True)