Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -8,7 +8,6 @@ import base64
|
|
| 8 |
import torch
|
| 9 |
from torch.nn.utils import prune
|
| 10 |
import subprocess
|
| 11 |
-
from tqdm import tqdm
|
| 12 |
import logging
|
| 13 |
import sys
|
| 14 |
|
|
@@ -46,7 +45,6 @@ def merge_kit_prune(model: PreTrainedModel, target_num_parameters: int, progress
|
|
| 46 |
Returns:
|
| 47 |
PreTrainedModel: The pruned model.
|
| 48 |
"""
|
| 49 |
-
|
| 50 |
total_params = sum(p.numel() for p in model.parameters())
|
| 51 |
amount = 1 - (target_num_parameters / total_params)
|
| 52 |
|
|
@@ -93,13 +91,12 @@ def prune_model(llm_model_name, target_size, hf_write_token, repo_name, base_mod
|
|
| 93 |
|
| 94 |
# Save the pruned model
|
| 95 |
api = HfApi()
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
llm_tokenizer.push_to_hub(repo_id, use_auth_token=hf_write_token)
|
| 100 |
|
| 101 |
-
log_messages.append(f"Pruned model saved to Hugging Face Hub in repository {
|
| 102 |
-
logging.info(f"Pruned model saved to Hugging Face Hub in repository {
|
| 103 |
|
| 104 |
# Create a visualization
|
| 105 |
fig, ax = plt.subplots(figsize=(10, 5))
|
|
@@ -111,7 +108,7 @@ def prune_model(llm_model_name, target_size, hf_write_token, repo_name, base_mod
|
|
| 111 |
buf.seek(0)
|
| 112 |
image_base64 = base64.b64encode(buf.read()).decode('utf-8')
|
| 113 |
|
| 114 |
-
return f"Pruned model saved to Hugging Face Hub in repository {
|
| 115 |
|
| 116 |
except Exception as e:
|
| 117 |
error_message = f"Detailed error: {repr(e)}"
|
|
@@ -119,6 +116,18 @@ def prune_model(llm_model_name, target_size, hf_write_token, repo_name, base_mod
|
|
| 119 |
logging.error(error_message)
|
| 120 |
return error_message, None, '\n'.join(log_messages)
|
| 121 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
# Function to create a Gradio interface
|
| 123 |
def create_interface():
|
| 124 |
with gr.Blocks() as demo:
|
|
@@ -126,43 +135,33 @@ def create_interface():
|
|
| 126 |
|
| 127 |
# Fetch available model names
|
| 128 |
model_names = get_model_names()
|
| 129 |
-
|
| 130 |
# Input components
|
| 131 |
llm_model_name = gr.Dropdown(label="Choose a Large Language Model", choices=model_names, interactive=True)
|
|
|
|
| 132 |
target_size = gr.Slider(label="Target Model Size (%)", minimum=1, maximum=100, step=1, value=50, interactive=True)
|
| 133 |
hf_write_token = gr.Textbox(label="Hugging Face Write Token", placeholder="Enter your HF write token", interactive=True, type="password")
|
| 134 |
repo_name = gr.Textbox(label="Repository Name", placeholder="Enter the name of the repository", interactive=True)
|
| 135 |
pruned_func_choice = gr.Radio(label="Pruning Function", choices=["merge-kit"], value="merge-kit", interactive=True)
|
| 136 |
-
base_model_name = gr.Dropdown(label="Base Model Name (if required)", choices=model_names, interactive=True, visible=False)
|
| 137 |
|
| 138 |
pruning_status = gr.Textbox(label="Pruning Status", interactive=False)
|
| 139 |
prune_button = gr.Button("Prune Model")
|
| 140 |
visualization = gr.Image(label="Model Size Comparison", interactive=False)
|
| 141 |
progress_bar = gr.Progress()
|
| 142 |
-
|
| 143 |
-
|
|
|
|
| 144 |
if pruned_func_choice == "merge-kit":
|
| 145 |
return prune_model(llm_model_name, target_size, hf_write_token, repo_name, base_model_name, progress_bar)
|
| 146 |
else:
|
| 147 |
return f"Pruning function '{pruned_func_choice}' not implemented.", None, None
|
| 148 |
-
|
| 149 |
-
prune_button.click(fn=prune_model_with_progress, inputs=[llm_model_name, target_size, hf_write_token, repo_name, pruned_func_choice
|
| 150 |
-
|
| 151 |
text_input = gr.Textbox(label="Input Text")
|
| 152 |
text_output = gr.Textbox(label="Generated Text")
|
| 153 |
generate_button = gr.Button("Generate Text")
|
| 154 |
-
|
| 155 |
-
def generate_text(text, repo_name, hf_write_token):
|
| 156 |
-
try:
|
| 157 |
-
tokenizer = AutoTokenizer.from_pretrained(repo_name, use_auth_token=hf_write_token)
|
| 158 |
-
model = AutoModelForCausalLM.from_pretrained(repo_name, use_auth_token=hf_write_token)
|
| 159 |
-
generator = pipeline('text-generation', model=model, tokenizer=tokenizer)
|
| 160 |
-
generated_text = generator(text, max_length=50, num_beams=5, num_return_sequences=1)[0]['generated_text']
|
| 161 |
-
return generated_text
|
| 162 |
-
except Exception as e:
|
| 163 |
-
logging.error(f"Error during text generation: {e}")
|
| 164 |
-
return f"Error: {repr(e)}"
|
| 165 |
-
|
| 166 |
generate_button.click(fn=generate_text, inputs=[text_input, repo_name, hf_write_token], outputs=text_output)
|
| 167 |
|
| 168 |
return demo
|
|
|
|
| 8 |
import torch
|
| 9 |
from torch.nn.utils import prune
|
| 10 |
import subprocess
|
|
|
|
| 11 |
import logging
|
| 12 |
import sys
|
| 13 |
|
|
|
|
| 45 |
Returns:
|
| 46 |
PreTrainedModel: The pruned model.
|
| 47 |
"""
|
|
|
|
| 48 |
total_params = sum(p.numel() for p in model.parameters())
|
| 49 |
amount = 1 - (target_num_parameters / total_params)
|
| 50 |
|
|
|
|
| 91 |
|
| 92 |
# Save the pruned model
|
| 93 |
api = HfApi()
|
| 94 |
+
create_repo(repo_name, token=hf_write_token, private=False, exist_ok=True)
|
| 95 |
+
pruned_model.push_to_hub(repo_name, use_auth_token=hf_write_token)
|
| 96 |
+
llm_tokenizer.push_to_hub(repo_name, use_auth_token=hf_write_token)
|
|
|
|
| 97 |
|
| 98 |
+
log_messages.append(f"Pruned model saved to Hugging Face Hub in repository {repo_name}")
|
| 99 |
+
logging.info(f"Pruned model saved to Hugging Face Hub in repository {repo_name}")
|
| 100 |
|
| 101 |
# Create a visualization
|
| 102 |
fig, ax = plt.subplots(figsize=(10, 5))
|
|
|
|
| 108 |
buf.seek(0)
|
| 109 |
image_base64 = base64.b64encode(buf.read()).decode('utf-8')
|
| 110 |
|
| 111 |
+
return f"Pruned model saved to Hugging Face Hub in repository {repo_name}", f"data:image/png;base64,{image_base64}", '\n'.join(log_messages)
|
| 112 |
|
| 113 |
except Exception as e:
|
| 114 |
error_message = f"Detailed error: {repr(e)}"
|
|
|
|
| 116 |
logging.error(error_message)
|
| 117 |
return error_message, None, '\n'.join(log_messages)
|
| 118 |
|
| 119 |
+
# Define function to generate text
|
| 120 |
+
def generate_text(text, repo_name, hf_write_token):
|
| 121 |
+
try:
|
| 122 |
+
tokenizer = AutoTokenizer.from_pretrained(repo_name, use_auth_token=hf_write_token)
|
| 123 |
+
model = AutoModelForCausalLM.from_pretrained(repo_name, use_auth_token=hf_write_token)
|
| 124 |
+
generator = pipeline('text-generation', model=model, tokenizer=tokenizer)
|
| 125 |
+
generated_text = generator(text, max_length=50, num_beams=5, num_return_sequences=1)[0]['generated_text']
|
| 126 |
+
return generated_text
|
| 127 |
+
except Exception as e:
|
| 128 |
+
logging.error(f"Error during text generation: {e}")
|
| 129 |
+
return f"Error: {repr(e)}"
|
| 130 |
+
|
| 131 |
# Function to create a Gradio interface
|
| 132 |
def create_interface():
|
| 133 |
with gr.Blocks() as demo:
|
|
|
|
| 135 |
|
| 136 |
# Fetch available model names
|
| 137 |
model_names = get_model_names()
|
| 138 |
+
|
| 139 |
# Input components
|
| 140 |
llm_model_name = gr.Dropdown(label="Choose a Large Language Model", choices=model_names, interactive=True)
|
| 141 |
+
base_model_name = gr.Dropdown(label="Base Model Name (if required)", choices=model_names, interactive=True, visible=False)
|
| 142 |
target_size = gr.Slider(label="Target Model Size (%)", minimum=1, maximum=100, step=1, value=50, interactive=True)
|
| 143 |
hf_write_token = gr.Textbox(label="Hugging Face Write Token", placeholder="Enter your HF write token", interactive=True, type="password")
|
| 144 |
repo_name = gr.Textbox(label="Repository Name", placeholder="Enter the name of the repository", interactive=True)
|
| 145 |
pruned_func_choice = gr.Radio(label="Pruning Function", choices=["merge-kit"], value="merge-kit", interactive=True)
|
|
|
|
| 146 |
|
| 147 |
pruning_status = gr.Textbox(label="Pruning Status", interactive=False)
|
| 148 |
prune_button = gr.Button("Prune Model")
|
| 149 |
visualization = gr.Image(label="Model Size Comparison", interactive=False)
|
| 150 |
progress_bar = gr.Progress()
|
| 151 |
+
|
| 152 |
+
# Define function for pruning model with progress
|
| 153 |
+
def prune_model_with_progress(llm_model_name, base_model_name, target_size, hf_write_token, repo_name, pruned_func_choice):
|
| 154 |
if pruned_func_choice == "merge-kit":
|
| 155 |
return prune_model(llm_model_name, target_size, hf_write_token, repo_name, base_model_name, progress_bar)
|
| 156 |
else:
|
| 157 |
return f"Pruning function '{pruned_func_choice}' not implemented.", None, None
|
| 158 |
+
|
| 159 |
+
prune_button.click(fn=prune_model_with_progress, inputs=[llm_model_name, base_model_name, target_size, hf_write_token, repo_name, pruned_func_choice], outputs=[pruning_status, visualization])
|
| 160 |
+
|
| 161 |
text_input = gr.Textbox(label="Input Text")
|
| 162 |
text_output = gr.Textbox(label="Generated Text")
|
| 163 |
generate_button = gr.Button("Generate Text")
|
| 164 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 165 |
generate_button.click(fn=generate_text, inputs=[text_input, repo_name, hf_write_token], outputs=text_output)
|
| 166 |
|
| 167 |
return demo
|