Spaces:
Runtime error
Runtime error
from transformers import AutoModelForSequenceClassification, AutoTokenizer, TextClassificationPipeline | |
import gradio as gr | |
# Load the fine-tuned model and tokenizer | |
new_model = AutoModelForSequenceClassification.from_pretrained('TeamQuad-fine-tuned-bert') | |
new_tokenizer = AutoTokenizer.from_pretrained('TeamQuad-fine-tuned-bert') | |
# Create a classification pipeline | |
classifier = TextClassificationPipeline(model=new_model, tokenizer=new_tokenizer) | |
# Add label mapping for fake news detection (assuming LABEL_0 = 'fake' and LABEL_1 = 'true') | |
label_mapping = {'LABEL_0': 'fake', 'LABEL_1': 'true'} | |
# Function to classify input text | |
def classify_news(text): | |
result = classifier(text) | |
# Extract the label and score | |
label = result[0]['label'] # 'LABEL_0' or 'LABEL_1' | |
score = result[0]['score'] # Confidence score | |
mapped_result = {'label': label_mapping[label], 'score': score} | |
return f"Label: {mapped_result['label']}, Score: {mapped_result['score']:.4f}" | |
# Create a Gradio interface | |
iface = gr.Interface( | |
fn=classify_news, # The function to process the input | |
inputs=gr.Textbox(lines=10, placeholder="Enter a news headline or article to classify..."), | |
outputs="text", # Output will be displayed as text | |
title="Fake News Detection", | |
description="Enter a news headline or article and see whether the model classifies it as 'Fake News' or 'True News'.", | |
) | |
# Launch the interface | |
iface.launch(share=True) | |