Spaces:
Sleeping
Sleeping
# vectorstore.py | |
import os | |
from langchain_community.document_loaders import TextLoader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain_community.vectorstores import FAISS | |
def load_and_split_document(file_path, chunk_size=1000, chunk_overlap=150): | |
""" | |
Load a document from a file and split it into chunks. | |
Args: | |
file_path: Path to the text file. | |
chunk_size: The maximum size of each chunk. | |
chunk_overlap: The overlap between chunks. | |
Returns: | |
A list of document chunks. | |
""" | |
loader = TextLoader( | |
file_path, | |
encoding='utf-8', | |
autodetect_encoding=True | |
) | |
try: | |
documents = loader.load() | |
except RuntimeError: | |
# Fallback to a different encoding if autodetection fails | |
loader = TextLoader( | |
file_path, | |
encoding='latin-1', | |
autodetect_encoding=False | |
) | |
documents = loader.load() | |
text_splitter = RecursiveCharacterTextSplitter( | |
chunk_size=chunk_size, | |
chunk_overlap=chunk_overlap, | |
length_function=len | |
) | |
chunks = text_splitter.split_documents(documents) | |
return chunks | |
def create_vector_stores(doc_paths, embeddings): | |
""" | |
Create vector stores from a list of document paths. | |
Args: | |
doc_paths: List of paths to document files. | |
embeddings: The embeddings model to use. | |
Returns: | |
A dictionary of vector stores. | |
""" | |
vector_stores = {} | |
os.makedirs("vector_stores", exist_ok=True) | |
for doc_path in doc_paths: | |
store_name = os.path.basename(doc_path).split('.')[0] | |
chunks = load_and_split_document(doc_path) | |
print(f"Processing {store_name}: {len(chunks)} chunks created") | |
vectorstore = FAISS.from_documents(chunks, embeddings) | |
vectorstore.save_local(f"vector_stores/{store_name}") | |
vector_stores[store_name] = vectorstore | |
return vector_stores | |
def create_vector_store_from_folder(folder_path, embeddings): | |
""" | |
Create a single vector store from all text files in a folder. | |
Args: | |
folder_path: Path to the folder containing text files. | |
embeddings: The embeddings model to use. | |
Returns: | |
A dictionary containing the created vector store. | |
""" | |
vector_stores = {} | |
os.makedirs("vector_stores", exist_ok=True) | |
all_chunks = [] | |
file_names = [] | |
for filename in os.listdir(folder_path): | |
if filename.endswith(".txt"): | |
file_path = os.path.join(folder_path, filename) | |
chunks = load_and_split_document(file_path) | |
all_chunks.extend(chunks) | |
file_names.append(filename) | |
print(f"Processing {folder_path}: {len(all_chunks)} chunks created from {len(file_names)} files") | |
vectorstore = FAISS.from_documents(all_chunks, embeddings) | |
store_name = os.path.basename(folder_path.rstrip('/')) | |
vectorstore.save_local(f"vector_stores/{store_name}") | |
vector_stores[store_name] = vectorstore | |
return vector_stores | |
def load_all_vector_stores(embeddings): | |
""" | |
Load all vector stores from the 'vector_stores' directory. | |
Args: | |
embeddings: The embeddings model to use. | |
Returns: | |
A dictionary of loaded vector stores. | |
""" | |
vector_stores = {} | |
store_dir = "vector_stores" | |
for store_name in os.listdir(store_dir): | |
store_path = os.path.join(store_dir, store_name) | |
if os.path.isdir(store_path): | |
vector_stores[store_name] = FAISS.load_local(store_path, embeddings, allow_dangerous_deserialization=True) | |
return vector_stores | |