Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,14 +1,29 @@
|
|
1 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import chromadb
|
3 |
from chromadb.utils import embedding_functions
|
4 |
-
|
5 |
-
|
6 |
-
import xml.etree.ElementTree as ET
|
7 |
-
from datetime import datetime
|
8 |
-
import os
|
9 |
|
10 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
def extract_node_details(element):
|
|
|
|
|
|
|
12 |
details = {
|
13 |
"NodeId": element.attrib.get("NodeId", "N/A"),
|
14 |
"Description": None,
|
@@ -31,8 +46,12 @@ def extract_node_details(element):
|
|
31 |
return details
|
32 |
|
33 |
def extract_value_content(value_element):
|
34 |
-
|
|
|
|
|
|
|
35 |
return value_element.text or "No value provided."
|
|
|
36 |
content = []
|
37 |
for child in value_element:
|
38 |
tag = child.tag.split('}')[-1]
|
@@ -40,10 +59,16 @@ def extract_value_content(value_element):
|
|
40 |
content.append(f"<{tag}>{child_text}</{tag}>")
|
41 |
return "".join(content)
|
42 |
|
43 |
-
def parse_nodes_to_dict(
|
44 |
-
|
|
|
|
|
|
|
|
|
45 |
root = tree.getroot()
|
|
|
46 |
namespace = root.tag.split('}')[0].strip('{')
|
|
|
47 |
node_types = ["UAObject", "UAVariable", "UAObjectType"]
|
48 |
nodes_dict = {}
|
49 |
for node_type in node_types:
|
@@ -54,8 +79,28 @@ def parse_nodes_to_dict(uploaded_file):
|
|
54 |
nodes_dict[node_id] = details
|
55 |
return nodes_dict
|
56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
def convert_to_natural_language(details):
|
58 |
-
|
|
|
|
|
|
|
59 |
messages = [
|
60 |
{
|
61 |
"role": "user",
|
@@ -68,112 +113,357 @@ def convert_to_natural_language(details):
|
|
68 |
)
|
69 |
return chat_completion.choices[0].message.content
|
70 |
|
71 |
-
#
|
72 |
-
def
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
if 'initialized' not in st.session_state:
|
88 |
-
st.session_state.initialized = False
|
89 |
-
|
90 |
-
# File upload
|
91 |
-
uploaded_file = st.file_uploader("Upload OPC UA XML file", type=['xml'])
|
92 |
-
|
93 |
-
if uploaded_file and not st.session_state.initialized:
|
94 |
-
with st.spinner("Processing XML file and initializing database..."):
|
95 |
try:
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
collection.add(
|
116 |
-
documents=[
|
117 |
-
metadatas=[{"NodeId": node_id
|
118 |
-
ids=[node_id
|
119 |
)
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
|
|
|
|
|
|
|
|
128 |
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
)
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
}
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
|
178 |
if __name__ == "__main__":
|
179 |
main()
|
|
|
1 |
import streamlit as st
|
2 |
+
import os
|
3 |
+
import tempfile
|
4 |
+
from typing import Dict, List, Tuple
|
5 |
+
import xml.etree.ElementTree as ET
|
6 |
+
from sentence_transformers import SentenceTransformer
|
7 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
8 |
+
from groq import Groq
|
9 |
import chromadb
|
10 |
from chromadb.utils import embedding_functions
|
11 |
+
import PyPDF2
|
12 |
+
import numpy as np
|
|
|
|
|
|
|
13 |
|
14 |
+
# Initialize session state for storing processed files
|
15 |
+
if 'processed_files' not in st.session_state:
|
16 |
+
st.session_state.processed_files = {}
|
17 |
+
if 'current_collection' not in st.session_state:
|
18 |
+
st.session_state.current_collection = None
|
19 |
+
if 'current_raw_nodes' not in st.session_state:
|
20 |
+
st.session_state.current_raw_nodes = {}
|
21 |
+
|
22 |
+
# Original XML processing functions remain unchanged
|
23 |
def extract_node_details(element):
|
24 |
+
"""
|
25 |
+
Extracts details like description, value, NodeId, DisplayName, and references from an XML element.
|
26 |
+
"""
|
27 |
details = {
|
28 |
"NodeId": element.attrib.get("NodeId", "N/A"),
|
29 |
"Description": None,
|
|
|
46 |
return details
|
47 |
|
48 |
def extract_value_content(value_element):
|
49 |
+
"""
|
50 |
+
Recursively extracts the content of a <Value> element, handling any embedded child elements.
|
51 |
+
"""
|
52 |
+
if not list(value_element): # No child elements, return text directly
|
53 |
return value_element.text or "No value provided."
|
54 |
+
# Process child elements
|
55 |
content = []
|
56 |
for child in value_element:
|
57 |
tag = child.tag.split('}')[-1]
|
|
|
59 |
content.append(f"<{tag}>{child_text}</{tag}>")
|
60 |
return "".join(content)
|
61 |
|
62 |
+
def parse_nodes_to_dict(filename):
|
63 |
+
"""
|
64 |
+
Parses the XML file and saves node details into a dictionary.
|
65 |
+
Each node's NodeId serves as the key, and the value is a dictionary of the node's details.
|
66 |
+
"""
|
67 |
+
tree = ET.parse(filename)
|
68 |
root = tree.getroot()
|
69 |
+
# Retrieve namespace from the root
|
70 |
namespace = root.tag.split('}')[0].strip('{')
|
71 |
+
# Node types to extract
|
72 |
node_types = ["UAObject", "UAVariable", "UAObjectType"]
|
73 |
nodes_dict = {}
|
74 |
for node_type in node_types:
|
|
|
79 |
nodes_dict[node_id] = details
|
80 |
return nodes_dict
|
81 |
|
82 |
+
|
83 |
+
def format_node_content(details):
|
84 |
+
"""
|
85 |
+
Formats raw node details into a single string for semantic comparison.
|
86 |
+
"""
|
87 |
+
content_parts = []
|
88 |
+
|
89 |
+
if details["Description"]:
|
90 |
+
content_parts.append(f"Description: {details['Description']}")
|
91 |
+
if details["DisplayName"]:
|
92 |
+
content_parts.append(f"DisplayName: {details['DisplayName']}")
|
93 |
+
if details["Value"]:
|
94 |
+
content_parts.append(f"Value: {details['Value']}")
|
95 |
+
|
96 |
+
return " | ".join(content_parts)
|
97 |
+
|
98 |
+
|
99 |
def convert_to_natural_language(details):
|
100 |
+
"""
|
101 |
+
Converts node details to natural language using Groq LLM.
|
102 |
+
"""
|
103 |
+
client = Groq(api_key=os.getenv("GROQ_API_KEY"))
|
104 |
messages = [
|
105 |
{
|
106 |
"role": "user",
|
|
|
113 |
)
|
114 |
return chat_completion.choices[0].message.content
|
115 |
|
116 |
+
# New file type detection and processing functions without magic library
|
117 |
+
def detect_file_type(file_path):
|
118 |
+
"""
|
119 |
+
Detects if the input file is PDF or XML using file extension and content analysis.
|
120 |
+
"""
|
121 |
+
try:
|
122 |
+
# Check file extension
|
123 |
+
file_extension = os.path.splitext(file_path)[1].lower()
|
124 |
+
|
125 |
+
# Read the first few bytes of the file to check its content
|
126 |
+
with open(file_path, 'rb') as f:
|
127 |
+
header = f.read(8) # Read first 8 bytes
|
128 |
+
|
129 |
+
# Check for PDF signature
|
130 |
+
if file_extension == '.pdf' or header.startswith(b'%PDF'):
|
131 |
+
# Verify it's actually a PDF by trying to open it
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
try:
|
133 |
+
with open(file_path, 'rb') as f:
|
134 |
+
PyPDF2.PdfReader(f)
|
135 |
+
return 'pdf'
|
136 |
+
except:
|
137 |
+
return 'unknown'
|
138 |
+
|
139 |
+
# Check for XML
|
140 |
+
elif file_extension == '.xml':
|
141 |
+
# Try to parse as XML
|
142 |
+
try:
|
143 |
+
with open(file_path, 'r', encoding='utf-8') as f:
|
144 |
+
content_start = f.read(1024) # Read first 1KB
|
145 |
+
# Check for XML declaration or root element
|
146 |
+
if content_start.strip().startswith(('<?xml', '<')):
|
147 |
+
ET.parse(file_path) # Verify it's valid XML
|
148 |
+
return 'xml'
|
149 |
+
except:
|
150 |
+
return 'unknown'
|
151 |
+
|
152 |
+
return 'unknown'
|
153 |
+
|
154 |
+
except Exception as e:
|
155 |
+
print(f"Error detecting file type: {str(e)}")
|
156 |
+
return 'unknown'
|
157 |
+
|
158 |
+
def process_pdf(file_path):
|
159 |
+
"""
|
160 |
+
Extracts text content from PDF and splits it into meaningful chunks.
|
161 |
+
"""
|
162 |
+
try:
|
163 |
+
chunks = []
|
164 |
+
with open(file_path, 'rb') as file:
|
165 |
+
pdf_reader = PyPDF2.PdfReader(file)
|
166 |
+
|
167 |
+
for page_num in range(len(pdf_reader.pages)):
|
168 |
+
page = pdf_reader.pages[page_num]
|
169 |
+
text = page.extract_text()
|
170 |
+
|
171 |
+
# Split text into paragraphs
|
172 |
+
paragraphs = text.split('\n\n')
|
173 |
+
|
174 |
+
# Process each paragraph
|
175 |
+
for para_num, paragraph in enumerate(paragraphs):
|
176 |
+
if len(paragraph.strip()) > 0: # Skip empty paragraphs
|
177 |
+
chunk = {
|
178 |
+
'content': paragraph.strip(),
|
179 |
+
'metadata': {
|
180 |
+
'page_number': page_num + 1,
|
181 |
+
'paragraph_number': para_num + 1,
|
182 |
+
'source_type': 'pdf',
|
183 |
+
'file_name': os.path.basename(file_path)
|
184 |
+
}
|
185 |
+
}
|
186 |
+
chunks.append(chunk)
|
187 |
+
|
188 |
+
return chunks
|
189 |
+
|
190 |
+
except Exception as e:
|
191 |
+
print(f"Error processing PDF: {str(e)}")
|
192 |
+
return []
|
193 |
+
|
194 |
+
def add_to_vector_db(collection, chunks, embedder):
|
195 |
+
"""
|
196 |
+
Adds processed chunks to the vector database with proper metadata.
|
197 |
+
"""
|
198 |
+
try:
|
199 |
+
for i, chunk in enumerate(chunks):
|
200 |
+
# Create unique ID for each chunk
|
201 |
+
chunk_id = f"{chunk['metadata']['file_name']}_{chunk['metadata']['page_number']}_{chunk['metadata']['paragraph_number']}"
|
202 |
+
|
203 |
+
collection.add(
|
204 |
+
documents=[chunk['content']],
|
205 |
+
metadatas=[chunk['metadata']],
|
206 |
+
ids=[chunk_id]
|
207 |
+
)
|
208 |
+
|
209 |
+
except Exception as e:
|
210 |
+
print(f"Error adding to vector database: {str(e)}")
|
211 |
+
|
212 |
+
def process_file(file_path):
|
213 |
+
"""
|
214 |
+
Main function to process either PDF or XML file and add to vector database.
|
215 |
+
Also returns the raw node details for XML files.
|
216 |
+
"""
|
217 |
+
try:
|
218 |
+
# Initialize ChromaDB and embedding function
|
219 |
+
client = chromadb.Client()
|
220 |
+
embedder = embedding_functions.SentenceTransformerEmbeddingFunction(
|
221 |
+
model_name="all-MiniLM-L6-v2"
|
222 |
+
)
|
223 |
+
|
224 |
+
# Create or get collection
|
225 |
+
collection = client.create_collection(
|
226 |
+
name="document_embeddings",
|
227 |
+
get_or_create=True
|
228 |
+
)
|
229 |
+
|
230 |
+
# Store for raw node details
|
231 |
+
raw_nodes = {}
|
232 |
+
|
233 |
+
# Detect file type
|
234 |
+
file_type = detect_file_type(file_path)
|
235 |
+
|
236 |
+
if file_type == 'pdf':
|
237 |
+
# Process PDF
|
238 |
+
chunks = process_pdf(file_path)
|
239 |
+
add_to_vector_db(collection, chunks, embedder)
|
240 |
+
|
241 |
+
elif file_type == 'xml':
|
242 |
+
# Parse XML and store raw nodes
|
243 |
+
raw_nodes = parse_nodes_to_dict(file_path)
|
244 |
+
|
245 |
+
# Convert to natural language for RAG
|
246 |
+
for node_id, details in raw_nodes.items():
|
247 |
+
nl_description = convert_to_natural_language(details)
|
248 |
+
|
249 |
+
# Add to vector DB
|
250 |
collection.add(
|
251 |
+
documents=[nl_description],
|
252 |
+
metadatas=[{"NodeId": node_id, "source_type": "xml"}],
|
253 |
+
ids=[node_id]
|
254 |
)
|
255 |
+
else:
|
256 |
+
raise ValueError("Unsupported file type")
|
257 |
+
|
258 |
+
return collection, raw_nodes
|
259 |
+
|
260 |
+
except Exception as e:
|
261 |
+
print(f"Error processing file: {str(e)}")
|
262 |
+
return None, {}
|
263 |
+
|
264 |
+
def generate_rag_response(query_text, context):
|
265 |
+
"""
|
266 |
+
Generates a RAG response using the Groq LLM based on the query and retrieved context.
|
267 |
|
268 |
+
Args:
|
269 |
+
query_text (str): The user's query
|
270 |
+
context (str): The retrieved context from the vector database
|
271 |
+
|
272 |
+
Returns:
|
273 |
+
str: The generated response from the LLM
|
274 |
+
"""
|
275 |
+
try:
|
276 |
+
client = Groq(api_key=os.getenv("GROQ_API_KEY"))
|
277 |
+
messages = [
|
278 |
+
{
|
279 |
+
"role": "system",
|
280 |
+
"content": "You are a helpful assistant that answers questions based on the provided context. "
|
281 |
+
"If the context doesn't contain relevant information, acknowledge that."
|
282 |
+
},
|
283 |
+
{
|
284 |
+
"role": "user",
|
285 |
+
"content": f"Answer the following query based on the provided context:\n\n"
|
286 |
+
f"Query: {query_text}\n\n"
|
287 |
+
f"Context: {context}"
|
288 |
+
}
|
289 |
+
]
|
290 |
+
|
291 |
+
chat_completion = client.chat.completions.create(
|
292 |
+
messages=messages,
|
293 |
+
model="llama3-8b-8192",
|
294 |
)
|
295 |
+
|
296 |
+
return chat_completion.choices[0].message.content
|
297 |
+
|
298 |
+
except Exception as e:
|
299 |
+
print(f"Error generating RAG response: {str(e)}")
|
300 |
+
return "Error generating response"
|
301 |
+
|
302 |
+
|
303 |
+
def find_similar_nodes(query_text, raw_nodes, top_k=5):
|
304 |
+
"""
|
305 |
+
Finds the most semantically similar nodes to the query using raw node content.
|
306 |
+
|
307 |
+
Args:
|
308 |
+
query_text (str): The user's query
|
309 |
+
raw_nodes (dict): Dictionary of node_id: node_details pairs
|
310 |
+
top_k (int): Number of top results to return
|
311 |
+
"""
|
312 |
+
try:
|
313 |
+
# Initialize the sentence transformer model
|
314 |
+
model = SentenceTransformer('all-MiniLM-L6-v2')
|
315 |
+
|
316 |
+
# Format node contents and create mapping
|
317 |
+
node_contents = {}
|
318 |
+
for node_id, details in raw_nodes.items():
|
319 |
+
formatted_content = format_node_content(details)
|
320 |
+
if formatted_content: # Only include nodes with content
|
321 |
+
node_contents[node_id] = formatted_content
|
322 |
+
|
323 |
+
# Generate embeddings for the query
|
324 |
+
query_embedding = model.encode([query_text])[0]
|
325 |
+
|
326 |
+
# Create a list of (node_id, content) tuples
|
327 |
+
nodes = list(node_contents.items())
|
328 |
+
contents = [content for _, content in nodes]
|
329 |
+
|
330 |
+
# Generate embeddings for all node contents
|
331 |
+
content_embeddings = model.encode(contents)
|
332 |
+
|
333 |
+
# Calculate cosine similarities
|
334 |
+
similarities = cosine_similarity([query_embedding], content_embeddings)[0]
|
335 |
+
|
336 |
+
# Get indices of top-k similar nodes
|
337 |
+
top_indices = np.argsort(similarities)[-top_k:][::-1]
|
338 |
+
|
339 |
+
# Format results
|
340 |
+
results = []
|
341 |
+
for idx in top_indices:
|
342 |
+
node_id, content = nodes[idx]
|
343 |
+
similarity_score = similarities[idx]
|
344 |
+
results.append({
|
345 |
+
'node_id': node_id,
|
346 |
+
'raw_content': content,
|
347 |
+
'original_details': raw_nodes[node_id],
|
348 |
+
'similarity_score': similarity_score
|
349 |
+
})
|
350 |
+
|
351 |
+
return results
|
352 |
+
|
353 |
+
except Exception as e:
|
354 |
+
print(f"Error finding similar nodes: {str(e)}")
|
355 |
+
return []
|
356 |
+
|
357 |
+
def query_documents(collection, raw_nodes, query_text, n_results=5):
|
358 |
+
"""
|
359 |
+
Query the vector database and perform semantic similarity search on raw nodes.
|
360 |
+
"""
|
361 |
+
try:
|
362 |
+
# Get results from vector database
|
363 |
+
results = collection.query(
|
364 |
+
query_texts=[query_text],
|
365 |
+
n_results=n_results
|
366 |
+
)
|
367 |
+
|
368 |
+
# Combine the retrieved results into context for RAG
|
369 |
+
retrieved_context = "\n".join(results["documents"][0])
|
370 |
+
|
371 |
+
# Generate RAG response
|
372 |
+
rag_response = generate_rag_response(query_text, retrieved_context)
|
373 |
+
|
374 |
+
# Find semantically similar nodes using raw node content
|
375 |
+
similar_nodes = find_similar_nodes(query_text, raw_nodes) if raw_nodes else []
|
376 |
+
|
377 |
+
# Format vector DB results
|
378 |
+
formatted_results = []
|
379 |
+
for i in range(len(results["documents"][0])):
|
380 |
+
result = {
|
381 |
+
"content": results["documents"][0][i],
|
382 |
+
"metadata": results["metadatas"][0][i],
|
383 |
+
"score": results["distances"][0][i] if "distances" in results else None,
|
384 |
+
"rag_response": rag_response if i == 0 else None
|
385 |
+
}
|
386 |
+
formatted_results.append(result)
|
387 |
+
|
388 |
+
return formatted_results, similar_nodes
|
389 |
+
|
390 |
+
except Exception as e:
|
391 |
+
print(f"Error querying documents: {str(e)}")
|
392 |
+
return [], []
|
393 |
+
|
394 |
+
def main():
|
395 |
+
st.title("Document Query System")
|
396 |
+
st.write("Upload PDF or XML files and query their contents")
|
397 |
+
|
398 |
+
# File upload section
|
399 |
+
uploaded_files = st.file_uploader(
|
400 |
+
"Upload PDF or XML files",
|
401 |
+
type=['pdf', 'xml'],
|
402 |
+
accept_multiple_files=True
|
403 |
+
)
|
404 |
+
|
405 |
+
# Process uploaded files
|
406 |
+
if uploaded_files:
|
407 |
+
for uploaded_file in uploaded_files:
|
408 |
+
if uploaded_file.name not in st.session_state.processed_files:
|
409 |
+
with st.spinner(f'Processing {uploaded_file.name}...'):
|
410 |
+
collection, raw_nodes = process_file(uploaded_file)
|
411 |
+
if collection:
|
412 |
+
st.session_state.processed_files[uploaded_file.name] = {
|
413 |
+
'collection': collection,
|
414 |
+
'raw_nodes': raw_nodes
|
415 |
}
|
416 |
+
st.success(f"Successfully processed {uploaded_file.name}")
|
417 |
+
else:
|
418 |
+
st.error(f"Failed to process {uploaded_file.name}")
|
419 |
+
|
420 |
+
# File selection and querying section
|
421 |
+
if st.session_state.processed_files:
|
422 |
+
selected_file = st.selectbox(
|
423 |
+
"Select file to query",
|
424 |
+
options=list(st.session_state.processed_files.keys())
|
425 |
+
)
|
426 |
+
|
427 |
+
if selected_file:
|
428 |
+
st.session_state.current_collection = st.session_state.processed_files[selected_file]['collection']
|
429 |
+
st.session_state.current_raw_nodes = st.session_state.processed_files[selected_file]['raw_nodes']
|
430 |
+
|
431 |
+
query = st.text_input("Enter your query:")
|
432 |
+
if st.button("Search"):
|
433 |
+
if query:
|
434 |
+
with st.spinner('Searching...'):
|
435 |
+
results, similar_nodes = query_documents(
|
436 |
+
st.session_state.current_collection,
|
437 |
+
st.session_state.current_raw_nodes,
|
438 |
+
query
|
439 |
+
)
|
440 |
+
|
441 |
+
# Display RAG response
|
442 |
+
if results and results[0]['rag_response']:
|
443 |
+
st.subheader("Generated Answer")
|
444 |
+
st.write(results[0]['rag_response'])
|
445 |
+
|
446 |
+
# Display vector DB results
|
447 |
+
st.subheader("Search Results")
|
448 |
+
for i, result in enumerate(results, 1):
|
449 |
+
with st.expander(f"Match {i}"):
|
450 |
+
st.write(f"Content: {result['content']}")
|
451 |
+
st.write(f"Source: {result['metadata']['source_type']}")
|
452 |
+
if result['metadata']['source_type'] == 'pdf':
|
453 |
+
st.write(f"Page: {result['metadata']['page_number']}")
|
454 |
+
elif result['metadata']['source_type'] == 'xml':
|
455 |
+
st.write(f"NodeId: {result['metadata']['NodeId']}")
|
456 |
+
|
457 |
+
# Display semantic similarity results
|
458 |
+
if similar_nodes:
|
459 |
+
st.subheader("Similar Nodes")
|
460 |
+
for i, node in enumerate(similar_nodes, 1):
|
461 |
+
with st.expander(f"Similar Node {i}"):
|
462 |
+
st.write(f"NodeId: {node['node_id']}")
|
463 |
+
st.write(f"Description: {node['original_details'].get('Description', 'N/A')}")
|
464 |
+
st.write(f"DisplayName: {node['original_details'].get('DisplayName', 'N/A')}")
|
465 |
+
st.write(f"Value: {node['original_details'].get('Value', 'N/A')}")
|
466 |
+
st.write(f"Similarity Score: {node['similarity_score']:.4f}")
|
467 |
|
468 |
if __name__ == "__main__":
|
469 |
main()
|