Spaces:
Sleeping
Sleeping
Update unified_document_processor.py
Browse files- unified_document_processor.py +356 -617
unified_document_processor.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
from typing import List, Dict, Union
|
2 |
from groq import Groq
|
3 |
import chromadb
|
4 |
import os
|
@@ -18,6 +18,138 @@ class CustomEmbeddingFunction:
|
|
18 |
embeddings = self.model.encode(input)
|
19 |
return embeddings.tolist()
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
class UnifiedDocumentProcessor:
|
22 |
def __init__(self, groq_api_key, collection_name="unified_content"):
|
23 |
"""Initialize the processor with necessary clients"""
|
@@ -25,6 +157,7 @@ class UnifiedDocumentProcessor:
|
|
25 |
|
26 |
# XML-specific settings
|
27 |
self.max_elements_per_chunk = 50
|
|
|
28 |
|
29 |
# PDF-specific settings
|
30 |
self.pdf_chunk_size = 500
|
@@ -52,32 +185,37 @@ class UnifiedDocumentProcessor:
|
|
52 |
)
|
53 |
|
54 |
def _initialize_nltk(self):
|
55 |
-
"""Ensure
|
56 |
try:
|
|
|
|
|
|
|
57 |
nltk.download('punkt')
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
|
|
62 |
except Exception as e:
|
63 |
-
print(f"
|
64 |
-
|
65 |
-
|
66 |
-
def
|
67 |
-
"""
|
68 |
-
|
69 |
-
current = ""
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
|
|
|
|
79 |
|
80 |
-
return
|
81 |
|
82 |
def extract_text_from_pdf(self, pdf_path: str) -> str:
|
83 |
"""Extract text from PDF file"""
|
@@ -93,12 +231,7 @@ class UnifiedDocumentProcessor:
|
|
93 |
|
94 |
def chunk_text(self, text: str) -> List[str]:
|
95 |
"""Split text into chunks while preserving sentence boundaries"""
|
96 |
-
|
97 |
-
sentences = sent_tokenize(text)
|
98 |
-
except Exception as e:
|
99 |
-
print(f"Warning: Using fallback sentence splitting: {str(e)}")
|
100 |
-
sentences = self._basic_sentence_split(text)
|
101 |
-
|
102 |
chunks = []
|
103 |
current_chunk = []
|
104 |
current_size = 0
|
@@ -125,646 +258,252 @@ class UnifiedDocumentProcessor:
|
|
125 |
|
126 |
return chunks
|
127 |
|
128 |
-
def
|
129 |
-
"""
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
# Process XML into chunks efficiently
|
135 |
-
chunks = []
|
136 |
-
paths = []
|
137 |
-
|
138 |
-
def process_element(element, current_path=""):
|
139 |
-
# Create element description
|
140 |
-
element_info = []
|
141 |
-
|
142 |
-
# Add basic information
|
143 |
-
element_info.append(f"Element: {element.tag}")
|
144 |
-
|
145 |
-
# Process namespace only if present
|
146 |
-
if '}' in element.tag:
|
147 |
-
namespace = element.tag.split('}')[0].strip('{')
|
148 |
-
element_info.append(f"Namespace: {namespace}")
|
149 |
-
|
150 |
-
# Process important attributes only
|
151 |
-
important_attrs = ['NodeId', 'BrowseName', 'DisplayName', 'Description', 'DataType']
|
152 |
-
attrs = {k: v for k, v in element.attrib.items() if k in important_attrs}
|
153 |
-
if attrs:
|
154 |
-
for key, value in attrs.items():
|
155 |
-
element_info.append(f"{key}: {value}")
|
156 |
-
|
157 |
-
# Process text content if meaningful
|
158 |
-
if element.text and element.text.strip():
|
159 |
-
element_info.append(f"Content: {element.text.strip()}")
|
160 |
-
|
161 |
-
# Create chunk text
|
162 |
-
chunk_text = " | ".join(element_info)
|
163 |
-
new_path = f"{current_path}/{element.tag}" if current_path else element.tag
|
164 |
-
|
165 |
-
chunks.append(chunk_text)
|
166 |
-
paths.append(new_path)
|
167 |
-
|
168 |
-
# Process children
|
169 |
-
for child in element:
|
170 |
-
process_element(child, new_path)
|
171 |
-
|
172 |
-
# Start processing from root
|
173 |
-
process_element(root)
|
174 |
-
print(f"Generated {len(chunks)} XML chunks")
|
175 |
-
|
176 |
-
# Batch process into database
|
177 |
-
batch_size = 100 # Increased batch size
|
178 |
-
results = []
|
179 |
-
|
180 |
-
for i in range(0, len(chunks), batch_size):
|
181 |
-
batch_end = min(i + batch_size, len(chunks))
|
182 |
-
batch_chunks = chunks[i:batch_end]
|
183 |
-
batch_paths = paths[i:batch_end]
|
184 |
-
|
185 |
-
# Prepare batch metadata
|
186 |
-
batch_metadata = [{
|
187 |
-
'source_file': os.path.basename(xml_file_path),
|
188 |
-
'content_type': 'xml',
|
189 |
-
'chunk_id': idx,
|
190 |
-
'total_chunks': len(chunks),
|
191 |
-
'xml_path': path,
|
192 |
-
'timestamp': str(datetime.datetime.now())
|
193 |
-
} for idx, path in enumerate(batch_paths, start=i)]
|
194 |
-
|
195 |
-
# Generate batch IDs
|
196 |
-
batch_ids = [
|
197 |
-
f"{os.path.basename(xml_file_path)}_xml_{idx}_{datetime.datetime.now().strftime('%Y%m%d_%H%M%S')}"
|
198 |
-
for idx in range(i, batch_end)
|
199 |
-
]
|
200 |
-
|
201 |
-
# Store batch in vector database
|
202 |
-
self.collection.add(
|
203 |
-
documents=batch_chunks,
|
204 |
-
metadatas=batch_metadata,
|
205 |
-
ids=batch_ids
|
206 |
-
)
|
207 |
-
|
208 |
-
# Track results
|
209 |
-
results.extend([{
|
210 |
-
'chunk': idx,
|
211 |
-
'success': True,
|
212 |
-
'doc_id': doc_id,
|
213 |
-
'text': text
|
214 |
-
} for idx, (doc_id, text) in enumerate(zip(batch_ids, batch_chunks), start=i)])
|
215 |
-
|
216 |
-
# Print progress
|
217 |
-
print(f"Processed chunks {i} to {batch_end} of {len(chunks)}")
|
218 |
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
'
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
return {
|
228 |
-
'success': False,
|
229 |
-
'error': str(e)
|
230 |
-
}
|
231 |
|
232 |
-
|
233 |
-
|
234 |
-
try:
|
235 |
-
full_text = self.extract_text_from_pdf(pdf_file_path)
|
236 |
-
chunks = self.chunk_text(full_text)
|
237 |
|
238 |
-
|
239 |
-
results = []
|
240 |
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
'timestamp': str(datetime.datetime.now()),
|
249 |
-
'chunk_size': len(chunk.split())
|
250 |
-
}
|
251 |
-
|
252 |
-
# Store directly in vector database
|
253 |
-
doc_id = self.store_in_vector_db(chunk, metadata)
|
254 |
-
|
255 |
-
results.append({
|
256 |
-
'chunk': i,
|
257 |
-
'success': True,
|
258 |
-
'doc_id': doc_id,
|
259 |
-
'text': chunk[:200] + "..." if len(chunk) > 200 else chunk
|
260 |
-
})
|
261 |
-
except Exception as e:
|
262 |
-
results.append({
|
263 |
-
'chunk': i,
|
264 |
-
'success': False,
|
265 |
-
'error': str(e)
|
266 |
-
})
|
267 |
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
'results': results
|
272 |
-
}
|
273 |
|
|
|
|
|
|
|
|
|
|
|
|
|
274 |
except Exception as e:
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
|
|
|
|
|
|
|
|
|
|
279 |
|
280 |
-
def store_in_vector_db(self,
|
281 |
"""Store content in vector database"""
|
282 |
doc_id = f"{metadata['source_file']}_{metadata['content_type']}_{metadata['chunk_id']}_{datetime.datetime.now().strftime('%Y%m%d_%H%M%S')}"
|
283 |
|
284 |
self.collection.add(
|
285 |
-
documents=[
|
286 |
metadatas=[metadata],
|
287 |
ids=[doc_id]
|
288 |
)
|
289 |
|
290 |
return doc_id
|
291 |
|
292 |
-
def
|
293 |
-
"""
|
294 |
try:
|
295 |
-
|
296 |
-
include=['metadatas']
|
297 |
-
)
|
298 |
-
|
299 |
-
files = {
|
300 |
-
'pdf': set(),
|
301 |
-
'xml': set()
|
302 |
-
}
|
303 |
-
|
304 |
-
for metadata in all_entries['metadatas']:
|
305 |
-
file_type = metadata['content_type']
|
306 |
-
file_name = metadata['source_file']
|
307 |
-
files[file_type].add(file_name)
|
308 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
309 |
return {
|
310 |
-
'
|
311 |
-
'
|
312 |
}
|
313 |
-
except Exception as e:
|
314 |
-
print(f"Error getting available files: {str(e)}")
|
315 |
-
return {'pdf': [], 'xml': []}
|
316 |
|
317 |
-
def
|
318 |
-
"""
|
319 |
try:
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
results = self.collection.query(
|
325 |
-
query_texts=[question],
|
326 |
-
n_results=n_results,
|
327 |
-
where=filter_dict,
|
328 |
-
include=["documents", "metadatas"]
|
329 |
-
)
|
330 |
-
|
331 |
-
if not results['documents'][0]:
|
332 |
-
return "No relevant content found in the selected files."
|
333 |
-
|
334 |
-
# Format answer based on content type
|
335 |
-
formatted_answer = []
|
336 |
-
for doc, meta in zip(results['documents'][0], results['metadatas'][0]):
|
337 |
-
if meta['content_type'] == 'xml':
|
338 |
-
formatted_answer.append(f"Found in XML path: {meta['xml_path']}\n{doc}")
|
339 |
-
else:
|
340 |
-
formatted_answer.append(doc)
|
341 |
-
|
342 |
-
# Create response using the matched content
|
343 |
-
prompt = f"""Based on these relevant sections, please answer: {question}
|
344 |
-
|
345 |
-
Relevant Content:
|
346 |
-
{' '.join(formatted_answer)}
|
347 |
-
|
348 |
-
Please provide a clear, concise answer based on the above content."""
|
349 |
-
|
350 |
-
response = self.groq_client.chat.completions.create(
|
351 |
-
messages=[{"role": "user", "content": prompt}],
|
352 |
-
model="llama3-8b-8192",
|
353 |
-
temperature=0.2
|
354 |
-
)
|
355 |
|
356 |
-
|
|
|
357 |
|
358 |
-
|
359 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
360 |
|
361 |
-
def get_detailed_context(self, question: str, selected_files: List[str], n_results: int = 5) -> Dict:
|
362 |
-
"""Get detailed context including path and metadata information"""
|
363 |
-
try:
|
364 |
-
filter_dict = {
|
365 |
-
'source_file': {'$in': selected_files}
|
366 |
-
}
|
367 |
-
|
368 |
-
results = self.collection.query(
|
369 |
-
query_texts=[question],
|
370 |
-
n_results=n_results,
|
371 |
-
where=filter_dict,
|
372 |
-
include=["documents", "metadatas", "distances"]
|
373 |
-
)
|
374 |
-
|
375 |
-
if not results['documents'][0]:
|
376 |
-
return {
|
377 |
-
'success': False,
|
378 |
-
'error': "No relevant content found"
|
379 |
-
}
|
380 |
-
|
381 |
-
detailed_results = []
|
382 |
-
for doc, meta, distance in zip(results['documents'][0], results['metadatas'][0], results['distances'][0]):
|
383 |
-
result_info = {
|
384 |
-
'content': doc,
|
385 |
-
'metadata': meta,
|
386 |
-
'similarity_score': round((1 - distance) * 100, 2), # Convert to percentage
|
387 |
-
'source_info': {
|
388 |
-
'file': meta['source_file'],
|
389 |
-
'type': meta['content_type'],
|
390 |
-
'path': meta.get('xml_path', 'N/A'),
|
391 |
-
'context': json.loads(meta['context']) if meta.get('context') else {}
|
392 |
-
}
|
393 |
-
}
|
394 |
-
detailed_results.append(result_info)
|
395 |
-
|
396 |
return {
|
397 |
'success': True,
|
398 |
-
'
|
399 |
-
'
|
400 |
}
|
401 |
-
|
402 |
except Exception as e:
|
403 |
return {
|
404 |
'success': False,
|
405 |
'error': str(e)
|
406 |
}
|
407 |
|
408 |
-
def
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
if not initial_results['success']:
|
415 |
-
return initial_results
|
416 |
|
417 |
-
|
418 |
-
|
419 |
-
if result['metadata']['content_type'] == 'xml':
|
420 |
-
# Get parent elements
|
421 |
-
parent_path = '/'.join(result['source_info']['path'].split('/')[:-1])
|
422 |
-
if parent_path:
|
423 |
-
parent_filter = {
|
424 |
-
'source_file': {'$eq': result['metadata']['source_file']},
|
425 |
-
'xml_path': {'$eq': parent_path}
|
426 |
-
}
|
427 |
-
parent_results = self.collection.query(
|
428 |
-
query_texts=[""], # Empty query to get exact match
|
429 |
-
where=parent_filter,
|
430 |
-
include=["documents", "metadatas"],
|
431 |
-
n_results=1
|
432 |
-
)
|
433 |
-
if parent_results['documents'][0]:
|
434 |
-
result['parent_info'] = {
|
435 |
-
'content': parent_results['documents'][0][0],
|
436 |
-
'metadata': parent_results['metadatas'][0][0]
|
437 |
-
}
|
438 |
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
}
|
443 |
-
all_results = self.collection.query(
|
444 |
-
query_texts=[""],
|
445 |
-
where=all_filter,
|
446 |
-
include=["documents", "metadatas"],
|
447 |
-
n_results=100
|
448 |
-
)
|
449 |
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
|
459 |
-
|
460 |
-
|
461 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
462 |
|
463 |
-
|
464 |
-
|
|
|
|
|
|
|
465 |
|
466 |
-
|
|
|
|
|
|
|
|
|
467 |
|
468 |
-
|
469 |
-
|
470 |
-
|
471 |
-
|
472 |
-
|
|
|
473 |
|
474 |
-
|
475 |
-
|
476 |
-
|
477 |
-
|
478 |
-
}
|
479 |
|
480 |
-
|
481 |
-
|
482 |
-
|
483 |
-
|
484 |
-
detailed_results = self.get_hierarchical_context(question, selected_files)
|
485 |
-
|
486 |
-
if not detailed_results['success']:
|
487 |
-
return detailed_results
|
488 |
|
489 |
-
|
490 |
-
|
491 |
-
|
492 |
-
|
493 |
-
|
494 |
-
|
495 |
-
|
496 |
-
]
|
497 |
-
if 'parent_info' in result:
|
498 |
-
content_info.append(f"Parent: {result['parent_info']['content']}")
|
499 |
-
if 'children_info' in result:
|
500 |
-
children_content = [child['content'] for child in result['children_info']]
|
501 |
-
content_info.append(f"Related Elements: {', '.join(children_content)}")
|
502 |
-
else:
|
503 |
-
content_info = [f"Content: {result['content']}"]
|
504 |
|
505 |
-
|
|
|
|
|
|
|
|
|
|
|
506 |
|
507 |
-
|
508 |
-
|
509 |
-
|
510 |
-
|
511 |
-
|
512 |
-
|
513 |
-
f"Content:\n{chr(10).join(relevant_content)}"
|
514 |
-
)
|
515 |
|
516 |
-
|
517 |
-
|
518 |
-
model="llama3-8b-8192",
|
519 |
-
temperature=0.2
|
520 |
-
)
|
521 |
|
522 |
-
|
523 |
-
'success': True,
|
524 |
-
'summary': response.choices[0].message.content,
|
525 |
-
'details': detailed_results['results'],
|
526 |
-
'query': question
|
527 |
-
}
|
528 |
|
529 |
-
|
530 |
-
return {
|
531 |
-
'success': False,
|
532 |
-
'error': str(e)
|
533 |
-
}
|
534 |
-
|
535 |
-
|
536 |
-
def process_file(self, file_path: str) -> Dict:
|
537 |
-
"""Process any supported file type"""
|
538 |
-
try:
|
539 |
-
file_extension = os.path.splitext(file_path)[1].lower()
|
540 |
-
|
541 |
-
if file_extension == '.xml':
|
542 |
-
return self.process_xml_file(file_path)
|
543 |
-
elif file_extension == '.pdf':
|
544 |
-
return self.process_pdf_file(file_path)
|
545 |
-
else:
|
546 |
-
return {
|
547 |
-
'success': False,
|
548 |
-
'error': f'Unsupported file type: {file_extension}'
|
549 |
-
}
|
550 |
-
except Exception as e:
|
551 |
-
return {
|
552 |
-
'success': False,
|
553 |
-
'error': f'Error processing file: {str(e)}'
|
554 |
-
}
|
555 |
-
|
556 |
-
def calculate_detailed_score(self, distance: float, metadata: Dict, content: str, query: str) -> Dict:
|
557 |
-
"""
|
558 |
-
Calculate a detailed, multi-faceted relevance score
|
559 |
-
|
560 |
-
Components:
|
561 |
-
1. Vector Similarity (40%): Base similarity from embeddings
|
562 |
-
2. Content Match (20%): Direct term matching
|
563 |
-
3. Structural Relevance (20%): XML structure relevance (for XML files)
|
564 |
-
4. Context Completeness (10%): Completeness of metadata/context
|
565 |
-
5. Freshness (10%): How recent the content is
|
566 |
-
"""
|
567 |
-
try:
|
568 |
-
scores = {}
|
569 |
-
|
570 |
-
# 1. Vector Similarity Score (40%)
|
571 |
-
vector_similarity = 1 - distance # Convert distance to similarity
|
572 |
-
scores['vector_similarity'] = {
|
573 |
-
'score': vector_similarity,
|
574 |
-
'weight': 0.4,
|
575 |
-
'weighted_score': vector_similarity * 0.4
|
576 |
-
}
|
577 |
-
|
578 |
-
# 2. Content Match Score (20%)
|
579 |
-
content_match_score = self._calculate_content_match(content, query)
|
580 |
-
scores['content_match'] = {
|
581 |
-
'score': content_match_score,
|
582 |
-
'weight': 0.2,
|
583 |
-
'weighted_score': content_match_score * 0.2
|
584 |
-
}
|
585 |
-
|
586 |
-
# 3. Structural Relevance Score (20%)
|
587 |
-
if metadata['content_type'] == 'xml':
|
588 |
-
structural_score = self._calculate_structural_relevance(metadata)
|
589 |
-
else:
|
590 |
-
structural_score = 0.5 # Default for non-XML
|
591 |
-
scores['structural_relevance'] = {
|
592 |
-
'score': structural_score,
|
593 |
-
'weight': 0.2,
|
594 |
-
'weighted_score': structural_score * 0.2
|
595 |
-
}
|
596 |
-
|
597 |
-
# 4. Context Completeness Score (10%)
|
598 |
-
context_score = self._calculate_context_completeness(metadata)
|
599 |
-
scores['context_completeness'] = {
|
600 |
-
'score': context_score,
|
601 |
-
'weight': 0.1,
|
602 |
-
'weighted_score': context_score * 0.1
|
603 |
-
}
|
604 |
-
|
605 |
-
# 5. Freshness Score (10%)
|
606 |
-
freshness_score = self._calculate_freshness(metadata['timestamp'])
|
607 |
-
scores['freshness'] = {
|
608 |
-
'score': freshness_score,
|
609 |
-
'weight': 0.1,
|
610 |
-
'weighted_score': freshness_score * 0.1
|
611 |
-
}
|
612 |
-
|
613 |
-
# Calculate total score
|
614 |
-
total_score = sum(s['weighted_score'] for s in scores.values())
|
615 |
-
|
616 |
-
return {
|
617 |
-
'total_score': total_score,
|
618 |
-
'component_scores': scores,
|
619 |
-
'explanation': self._generate_score_explanation(scores)
|
620 |
-
}
|
621 |
-
|
622 |
-
except Exception as e:
|
623 |
-
print(f"Error in score calculation: {str(e)}")
|
624 |
-
return {
|
625 |
-
'total_score': 0.5,
|
626 |
-
'error': str(e)
|
627 |
-
}
|
628 |
-
|
629 |
-
def _calculate_content_match(self, content: str, query: str) -> float:
|
630 |
-
"""Calculate direct term matching score"""
|
631 |
-
try:
|
632 |
-
# Tokenize content and query
|
633 |
-
content_terms = set(content.lower().split())
|
634 |
-
query_terms = set(query.lower().split())
|
635 |
-
|
636 |
-
# Calculate overlap
|
637 |
-
matching_terms = content_terms.intersection(query_terms)
|
638 |
-
if not query_terms:
|
639 |
-
return 0.5
|
640 |
-
|
641 |
-
# Calculate scores for exact matches and partial matches
|
642 |
-
exact_match_score = len(matching_terms) / len(query_terms)
|
643 |
-
|
644 |
-
# Check for partial matches
|
645 |
-
partial_matches = 0
|
646 |
-
for q_term in query_terms:
|
647 |
-
for c_term in content_terms:
|
648 |
-
if q_term in c_term or c_term in q_term:
|
649 |
-
partial_matches += 0.5
|
650 |
-
|
651 |
-
partial_match_score = partial_matches / len(query_terms)
|
652 |
-
|
653 |
-
# Combine scores (70% exact matches, 30% partial matches)
|
654 |
-
return (exact_match_score * 0.7) + (partial_match_score * 0.3)
|
655 |
-
|
656 |
-
except Exception as e:
|
657 |
-
print(f"Error in content match calculation: {str(e)}")
|
658 |
-
return 0.5
|
659 |
|
660 |
-
|
661 |
-
|
662 |
-
try:
|
663 |
-
score = 0.5 # Base score
|
664 |
-
|
665 |
-
if 'xml_path' in metadata:
|
666 |
-
path = metadata['xml_path']
|
667 |
-
|
668 |
-
# Score based on path depth (deeper paths might be more specific)
|
669 |
-
depth = len(path.split('/'))
|
670 |
-
depth_score = min(depth / 5, 1.0) # Normalize depth score
|
671 |
-
|
672 |
-
# Score based on element type
|
673 |
-
element_type = metadata.get('element_type', '')
|
674 |
-
type_scores = {
|
675 |
-
'UAObjectType': 0.9,
|
676 |
-
'UAVariableType': 0.9,
|
677 |
-
'UAObject': 0.8,
|
678 |
-
'UAVariable': 0.8,
|
679 |
-
'UAMethod': 0.7,
|
680 |
-
'UAView': 0.6,
|
681 |
-
'UAReferenceType': 0.7
|
682 |
-
}
|
683 |
-
type_score = type_scores.get(element_type, 0.5)
|
684 |
-
|
685 |
-
# Score based on context completeness
|
686 |
-
context = json.loads(metadata.get('context', '{}'))
|
687 |
-
context_score = len(context) / 10 if context else 0.5
|
688 |
-
|
689 |
-
# Combine scores
|
690 |
-
score = (depth_score * 0.3) + (type_score * 0.4) + (context_score * 0.3)
|
691 |
-
|
692 |
-
return score
|
693 |
-
|
694 |
-
except Exception as e:
|
695 |
-
print(f"Error in structural relevance calculation: {str(e)}")
|
696 |
-
return 0.5
|
697 |
|
698 |
-
|
699 |
-
"""Calculate context completeness score"""
|
700 |
-
try:
|
701 |
-
expected_fields = {
|
702 |
-
'xml': ['xml_path', 'element_type', 'context', 'chunk_id', 'total_chunks'],
|
703 |
-
'pdf': ['chunk_id', 'total_chunks', 'chunk_size']
|
704 |
-
}
|
705 |
-
|
706 |
-
content_type = metadata.get('content_type', '')
|
707 |
-
if content_type not in expected_fields:
|
708 |
-
return 0.5
|
709 |
-
|
710 |
-
# Check for presence of expected fields
|
711 |
-
expected = expected_fields[content_type]
|
712 |
-
present_fields = sum(1 for field in expected if field in metadata)
|
713 |
-
|
714 |
-
# Calculate base completeness score
|
715 |
-
completeness = present_fields / len(expected)
|
716 |
-
|
717 |
-
# Add bonus for additional useful metadata
|
718 |
-
bonus = 0
|
719 |
-
if content_type == 'xml':
|
720 |
-
context = json.loads(metadata.get('context', '{}'))
|
721 |
-
if context:
|
722 |
-
bonus += 0.2
|
723 |
-
|
724 |
-
return min(completeness + bonus, 1.0)
|
725 |
-
|
726 |
-
except Exception as e:
|
727 |
-
print(f"Error in context completeness calculation: {str(e)}")
|
728 |
-
return 0.5
|
729 |
|
730 |
-
|
731 |
-
|
732 |
-
|
733 |
-
|
734 |
-
|
735 |
-
now = datetime.datetime.now()
|
736 |
-
|
737 |
-
# Calculate age in hours
|
738 |
-
age_hours = (now - doc_time).total_seconds() / 3600
|
739 |
-
|
740 |
-
# Score decreases with age (24 hours = 1 day)
|
741 |
-
if age_hours < 24:
|
742 |
-
return 1.0
|
743 |
-
elif age_hours < 168: # 1 week
|
744 |
-
return 0.8
|
745 |
-
elif age_hours < 720: # 1 month
|
746 |
-
return 0.6
|
747 |
-
else:
|
748 |
-
return 0.4
|
749 |
-
|
750 |
-
except Exception as e:
|
751 |
-
print(f"Error in freshness calculation: {str(e)}")
|
752 |
-
return 0.5
|
753 |
|
754 |
-
|
755 |
-
|
756 |
-
|
757 |
-
|
758 |
-
f"Total Score: {scores['total_score']:.2f}",
|
759 |
-
"\nComponent Scores:",
|
760 |
-
f"• Vector Similarity: {scores['vector_similarity']['score']:.2f} (40% weight)",
|
761 |
-
f"• Content Match: {scores['content_match']['score']:.2f} (20% weight)",
|
762 |
-
f"• Structural Relevance: {scores['structural_relevance']['score']:.2f} (20% weight)",
|
763 |
-
f"• Context Completeness: {scores['context_completeness']['score']:.2f} (10% weight)",
|
764 |
-
f"• Freshness: {scores['freshness']['score']:.2f} (10% weight)"
|
765 |
-
]
|
766 |
-
return "\n".join(explanations)
|
767 |
-
|
768 |
-
except Exception as e:
|
769 |
-
print(f"Error generating score explanation: {str(e)}")
|
770 |
-
return "Score explanation unavailable"
|
|
|
1 |
+
from typing import List, Dict, Union, Optional
|
2 |
from groq import Groq
|
3 |
import chromadb
|
4 |
import os
|
|
|
18 |
embeddings = self.model.encode(input)
|
19 |
return embeddings.tolist()
|
20 |
|
21 |
+
class EnhancedXMLProcessor:
|
22 |
+
def __init__(self):
|
23 |
+
self.processed_nodes = set()
|
24 |
+
self.reference_map = {}
|
25 |
+
self.node_info = {}
|
26 |
+
|
27 |
+
def build_reference_map(self, root) -> None:
|
28 |
+
"""Build a map of all node references for faster lookup"""
|
29 |
+
for element in root.findall('.//*'):
|
30 |
+
node_id = element.get('NodeId')
|
31 |
+
if node_id:
|
32 |
+
self.node_info[node_id] = {
|
33 |
+
'tag': element.tag,
|
34 |
+
'browse_name': element.get('BrowseName', ''),
|
35 |
+
'display_name': self._get_display_name(element),
|
36 |
+
'description': self._get_description(element),
|
37 |
+
'data_type': element.get('DataType', ''),
|
38 |
+
'references': []
|
39 |
+
}
|
40 |
+
|
41 |
+
refs = element.find('References')
|
42 |
+
if refs is not None:
|
43 |
+
for ref in refs.findall('Reference'):
|
44 |
+
ref_type = ref.get('ReferenceType')
|
45 |
+
is_forward = ref.get('IsForward', 'true') == 'true'
|
46 |
+
target = ref.text
|
47 |
+
|
48 |
+
if ref_type in ['HasComponent', 'HasProperty', 'HasTypeDefinition']:
|
49 |
+
self.reference_map.setdefault(node_id, []).append({
|
50 |
+
'type': ref_type,
|
51 |
+
'target': target,
|
52 |
+
'is_forward': is_forward
|
53 |
+
})
|
54 |
+
self.node_info[node_id]['references'].append({
|
55 |
+
'type': ref_type,
|
56 |
+
'target': target,
|
57 |
+
'is_forward': is_forward
|
58 |
+
})
|
59 |
+
|
60 |
+
def _get_display_name(self, element) -> str:
|
61 |
+
"""Extract display name from element"""
|
62 |
+
display_name = element.find('DisplayName')
|
63 |
+
if display_name is not None:
|
64 |
+
return display_name.text
|
65 |
+
return ''
|
66 |
+
|
67 |
+
def _get_description(self, element) -> str:
|
68 |
+
"""Extract description from element"""
|
69 |
+
desc = element.find('Description')
|
70 |
+
if desc is not None:
|
71 |
+
return desc.text
|
72 |
+
return ''
|
73 |
+
|
74 |
+
def generate_natural_language(self, node_id: str, depth: int = 0, visited: set = None) -> List[str]:
|
75 |
+
"""Generate natural language description for a node and its children"""
|
76 |
+
if visited is None:
|
77 |
+
visited = set()
|
78 |
+
|
79 |
+
if node_id in visited:
|
80 |
+
return []
|
81 |
+
|
82 |
+
visited.add(node_id)
|
83 |
+
descriptions = []
|
84 |
+
|
85 |
+
node = self.node_info.get(node_id)
|
86 |
+
if not node:
|
87 |
+
return []
|
88 |
+
|
89 |
+
base_desc = self._build_base_description(node, depth)
|
90 |
+
if base_desc:
|
91 |
+
descriptions.append(base_desc)
|
92 |
+
|
93 |
+
if node_id in self.reference_map:
|
94 |
+
child_descriptions = self._process_forward_references(node_id, depth + 1, visited)
|
95 |
+
descriptions.extend(child_descriptions)
|
96 |
+
|
97 |
+
return descriptions
|
98 |
+
|
99 |
+
def _build_base_description(self, node: Dict, depth: int) -> str:
|
100 |
+
"""Build the base description for a node"""
|
101 |
+
indentation = " " * depth
|
102 |
+
desc_parts = []
|
103 |
+
|
104 |
+
if node['browse_name']:
|
105 |
+
browse_name = node['browse_name'].split(':')[-1]
|
106 |
+
desc_parts.append(f"a {browse_name}")
|
107 |
+
|
108 |
+
if node['display_name']:
|
109 |
+
desc_parts.append(f"(displayed as '{node['display_name']}')")
|
110 |
+
|
111 |
+
if node['data_type']:
|
112 |
+
desc_parts.append(f"of type {node['data_type']}")
|
113 |
+
|
114 |
+
if node['description']:
|
115 |
+
desc_parts.append(f"which {node['description']}")
|
116 |
+
|
117 |
+
if desc_parts:
|
118 |
+
return f"{indentation}Contains {' '.join(desc_parts)}"
|
119 |
+
return ""
|
120 |
+
|
121 |
+
def _process_forward_references(self, node_id: str, depth: int, visited: set) -> List[str]:
|
122 |
+
"""Process forward references to build hierarchical descriptions"""
|
123 |
+
descriptions = []
|
124 |
+
|
125 |
+
for ref in self.reference_map.get(node_id, []):
|
126 |
+
if ref['is_forward'] and ref['type'] in ['HasComponent', 'HasProperty']:
|
127 |
+
target_descriptions = self.generate_natural_language(ref['target'], depth, visited)
|
128 |
+
descriptions.extend(target_descriptions)
|
129 |
+
|
130 |
+
return descriptions
|
131 |
+
|
132 |
+
def generate_complete_description(self, root) -> str:
|
133 |
+
"""Generate a complete natural language description of the XML structure"""
|
134 |
+
self.build_reference_map(root)
|
135 |
+
root_descriptions = []
|
136 |
+
|
137 |
+
for node_id in self.node_info:
|
138 |
+
is_root = True
|
139 |
+
for ref_list in self.reference_map.values():
|
140 |
+
for ref in ref_list:
|
141 |
+
if not ref['is_forward'] and ref['type'] == 'HasComponent' and ref['target'] == node_id:
|
142 |
+
is_root = False
|
143 |
+
break
|
144 |
+
if not is_root:
|
145 |
+
break
|
146 |
+
|
147 |
+
if is_root:
|
148 |
+
descriptions = self.generate_natural_language(node_id)
|
149 |
+
root_descriptions.extend(descriptions)
|
150 |
+
|
151 |
+
return "\n".join(root_descriptions)
|
152 |
+
|
153 |
class UnifiedDocumentProcessor:
|
154 |
def __init__(self, groq_api_key, collection_name="unified_content"):
|
155 |
"""Initialize the processor with necessary clients"""
|
|
|
157 |
|
158 |
# XML-specific settings
|
159 |
self.max_elements_per_chunk = 50
|
160 |
+
self.xml_processor = EnhancedXMLProcessor()
|
161 |
|
162 |
# PDF-specific settings
|
163 |
self.pdf_chunk_size = 500
|
|
|
185 |
)
|
186 |
|
187 |
def _initialize_nltk(self):
|
188 |
+
"""Ensure NLTK's `punkt` tokenizer resource is available."""
|
189 |
try:
|
190 |
+
nltk.data.find('tokenizers/punkt')
|
191 |
+
except LookupError:
|
192 |
+
print("Downloading NLTK 'punkt' tokenizer...")
|
193 |
nltk.download('punkt')
|
194 |
+
|
195 |
+
def flatten_xml_to_text(self, element, depth=0) -> str:
|
196 |
+
"""Convert XML to natural language using the enhanced processor"""
|
197 |
+
try:
|
198 |
+
return self.xml_processor.generate_complete_description(element)
|
199 |
except Exception as e:
|
200 |
+
print(f"Error in enhanced XML processing: {str(e)}")
|
201 |
+
return self._original_flatten_xml_to_text(element, depth)
|
202 |
+
|
203 |
+
def _original_flatten_xml_to_text(self, element, depth=0) -> str:
|
204 |
+
"""Original fallback XML flattening implementation"""
|
205 |
+
text_parts = []
|
|
|
206 |
|
207 |
+
element_info = f"Element: {element.tag}"
|
208 |
+
if element.attrib:
|
209 |
+
element_info += f", Attributes: {json.dumps(element.attrib)}"
|
210 |
+
if element.text and element.text.strip():
|
211 |
+
element_info += f", Text: {element.text.strip()}"
|
212 |
+
text_parts.append(element_info)
|
213 |
+
|
214 |
+
for child in element:
|
215 |
+
child_text = self._original_flatten_xml_to_text(child, depth + 1)
|
216 |
+
text_parts.append(child_text)
|
217 |
|
218 |
+
return "\n".join(text_parts)
|
219 |
|
220 |
def extract_text_from_pdf(self, pdf_path: str) -> str:
|
221 |
"""Extract text from PDF file"""
|
|
|
231 |
|
232 |
def chunk_text(self, text: str) -> List[str]:
|
233 |
"""Split text into chunks while preserving sentence boundaries"""
|
234 |
+
sentences = sent_tokenize(text)
|
|
|
|
|
|
|
|
|
|
|
235 |
chunks = []
|
236 |
current_chunk = []
|
237 |
current_size = 0
|
|
|
258 |
|
259 |
return chunks
|
260 |
|
261 |
+
def chunk_xml_text(self, text: str, max_chunk_size: int = 2000) -> List[str]:
|
262 |
+
"""Split flattened XML text into manageable chunks"""
|
263 |
+
lines = text.split('\n')
|
264 |
+
chunks = []
|
265 |
+
current_chunk = []
|
266 |
+
current_size = 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
267 |
|
268 |
+
for line in lines:
|
269 |
+
line_size = len(line)
|
270 |
+
if current_size + line_size > max_chunk_size and current_chunk:
|
271 |
+
chunks.append('\n'.join(current_chunk))
|
272 |
+
current_chunk = []
|
273 |
+
current_size = 0
|
274 |
+
current_chunk.append(line)
|
275 |
+
current_size += line_size
|
|
|
|
|
|
|
|
|
276 |
|
277 |
+
if current_chunk:
|
278 |
+
chunks.append('\n'.join(current_chunk))
|
|
|
|
|
|
|
279 |
|
280 |
+
return chunks
|
|
|
281 |
|
282 |
+
def generate_natural_language(self, content: Union[List[Dict], str], content_type: str) -> str:
|
283 |
+
"""Generate natural language description with improved error handling and chunking"""
|
284 |
+
try:
|
285 |
+
if content_type == "xml":
|
286 |
+
prompt = f"Convert this XML structure description to a natural language summary that preserves the hierarchical relationships: {content}"
|
287 |
+
else: # pdf
|
288 |
+
prompt = f"Summarize this text while preserving key information: {content}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
289 |
|
290 |
+
max_prompt_length = 4000
|
291 |
+
if len(prompt) > max_prompt_length:
|
292 |
+
prompt = prompt[:max_prompt_length] + "..."
|
|
|
|
|
293 |
|
294 |
+
response = self.groq_client.chat.completions.create(
|
295 |
+
messages=[{"role": "user", "content": prompt}],
|
296 |
+
model="llama3-8b-8192",
|
297 |
+
max_tokens=1000
|
298 |
+
)
|
299 |
+
return response.choices[0].message.content
|
300 |
except Exception as e:
|
301 |
+
print(f"Error generating natural language: {str(e)}")
|
302 |
+
if len(content) > 2000:
|
303 |
+
half_length = len(content) // 2
|
304 |
+
first_half = content[:half_length]
|
305 |
+
try:
|
306 |
+
return self.generate_natural_language(first_half, content_type)
|
307 |
+
except:
|
308 |
+
return None
|
309 |
+
return None
|
310 |
|
311 |
+
def store_in_vector_db(self, natural_language: str, metadata: Dict) -> str:
|
312 |
"""Store content in vector database"""
|
313 |
doc_id = f"{metadata['source_file']}_{metadata['content_type']}_{metadata['chunk_id']}_{datetime.datetime.now().strftime('%Y%m%d_%H%M%S')}"
|
314 |
|
315 |
self.collection.add(
|
316 |
+
documents=[natural_language],
|
317 |
metadatas=[metadata],
|
318 |
ids=[doc_id]
|
319 |
)
|
320 |
|
321 |
return doc_id
|
322 |
|
323 |
+
def process_file(self, file_path: str) -> Dict:
|
324 |
+
"""Process any supported file type"""
|
325 |
try:
|
326 |
+
file_extension = os.path.splitext(file_path)[1].lower()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
327 |
|
328 |
+
if file_extension == '.xml':
|
329 |
+
return self.process_xml_file(file_path)
|
330 |
+
elif file_extension == '.pdf':
|
331 |
+
return self.process_pdf_file(file_path)
|
332 |
+
else:
|
333 |
+
return {
|
334 |
+
'success': False,
|
335 |
+
'error': f'Unsupported file type: {file_extension}'
|
336 |
+
}
|
337 |
+
except Exception as e:
|
338 |
return {
|
339 |
+
'success': False,
|
340 |
+
'error': f'Error processing file: {str(e)}'
|
341 |
}
|
|
|
|
|
|
|
342 |
|
343 |
+
def process_xml_file(self, xml_file_path: str) -> Dict:
|
344 |
+
"""Process XML file with improved chunking"""
|
345 |
try:
|
346 |
+
tree = ET.parse(xml_file_path)
|
347 |
+
root = tree.getroot()
|
348 |
+
flattened_text = self.flatten_xml_to_text(root)
|
349 |
+
chunks = self.chunk_xml_text(flattened_text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
350 |
|
351 |
+
print(f"Split XML into {len(chunks)} chunks")
|
352 |
+
results = []
|
353 |
|
354 |
+
for i, chunk in enumerate(chunks):
|
355 |
+
print(f"Processing XML chunk {i+1}/{len(chunks)}")
|
356 |
+
try:
|
357 |
+
natural_language = self.generate_natural_language(chunk, "xml")
|
358 |
+
|
359 |
+
if natural_language:
|
360 |
+
metadata = {
|
361 |
+
'source_file': os.path.basename(xml_file_path),
|
362 |
+
'content_type': 'xml',
|
363 |
+
'chunk_id': i,
|
364 |
+
'total_chunks': len(chunks),
|
365 |
+
'timestamp': str(datetime.datetime.now())
|
366 |
+
}
|
367 |
+
doc_id = self.store_in_vector_db(natural_language, metadata)
|
368 |
+
results.append({
|
369 |
+
'chunk': i,
|
370 |
+
'success': True,
|
371 |
+
'doc_id': doc_id,
|
372 |
+
'natural_language': natural_language
|
373 |
+
})
|
374 |
+
else:
|
375 |
+
results.append({
|
376 |
+
'chunk': i,
|
377 |
+
'success': False,
|
378 |
+
'error': 'Failed to generate natural language'
|
379 |
+
})
|
380 |
+
except Exception as e:
|
381 |
+
print(f"Error processing chunk {i}: {str(e)}")
|
382 |
+
results.append({
|
383 |
+
'chunk': i,
|
384 |
+
'success': False,
|
385 |
+
'error': str(e)
|
386 |
+
})
|
387 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
388 |
return {
|
389 |
'success': True,
|
390 |
+
'total_chunks': len(chunks),
|
391 |
+
'results': results
|
392 |
}
|
393 |
+
|
394 |
except Exception as e:
|
395 |
return {
|
396 |
'success': False,
|
397 |
'error': str(e)
|
398 |
}
|
399 |
|
400 |
+
def process_pdf_file(self, pdf_file_path: str) -> Dict:
|
401 |
+
"""Process PDF file"""
|
402 |
+
try:
|
403 |
+
full_text = self.extract_text_from_pdf(pdf_file_path)
|
404 |
+
chunks = self.chunk_text(full_text)
|
|
|
|
|
|
|
405 |
|
406 |
+
print(f"Split PDF into {len(chunks)} chunks")
|
407 |
+
results = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
408 |
|
409 |
+
for i, chunk in enumerate(chunks):
|
410 |
+
print(f"Processing PDF chunk {i+1}/{len(chunks)}")
|
411 |
+
natural_language = self.generate_natural_language(chunk, "pdf")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
412 |
|
413 |
+
if natural_language:
|
414 |
+
metadata = {
|
415 |
+
'source_file': os.path.basename(pdf_file_path),
|
416 |
+
'content_type': 'pdf',
|
417 |
+
'chunk_id': i,
|
418 |
+
'total_chunks': len(chunks),
|
419 |
+
'timestamp': str(datetime.datetime.now()),
|
420 |
+
'chunk_size': len(chunk.split())
|
421 |
+
}
|
422 |
+
doc_id = self.store_in_vector_db(natural_language, metadata)
|
423 |
+
results.append({
|
424 |
+
'chunk': i,
|
425 |
+
'success': True,
|
426 |
+
'doc_id': doc_id,
|
427 |
+
'natural_language': natural_language,
|
428 |
+
'original_text': chunk[:200] + "..."
|
429 |
+
})
|
430 |
+
else:
|
431 |
+
results.append({
|
432 |
+
'chunk': i,
|
433 |
+
'success': False,
|
434 |
+
'error': 'Failed to generate natural language summary'
|
435 |
+
})
|
436 |
|
437 |
+
return {
|
438 |
+
'success': True,
|
439 |
+
'total_chunks': len(chunks),
|
440 |
+
'results': results
|
441 |
+
}
|
442 |
|
443 |
+
except Exception as e:
|
444 |
+
return {
|
445 |
+
'success': False,
|
446 |
+
'error': str(e)
|
447 |
+
}
|
448 |
|
449 |
+
def get_available_files(self) -> Dict[str, List[str]]:
|
450 |
+
"""Get list of all files in the database"""
|
451 |
+
try:
|
452 |
+
all_entries = self.collection.get(
|
453 |
+
include=['metadatas']
|
454 |
+
)
|
455 |
|
456 |
+
files = {
|
457 |
+
'pdf': set(),
|
458 |
+
'xml': set()
|
459 |
+
}
|
|
|
460 |
|
461 |
+
for metadata in all_entries['metadatas']:
|
462 |
+
file_type = metadata['content_type']
|
463 |
+
file_name = metadata['source_file']
|
464 |
+
files[file_type].add(file_name)
|
|
|
|
|
|
|
|
|
465 |
|
466 |
+
return {
|
467 |
+
'pdf': sorted(list(files['pdf'])),
|
468 |
+
'xml': sorted(list(files['xml']))
|
469 |
+
}
|
470 |
+
except Exception as e:
|
471 |
+
print(f"Error getting available files: {str(e)}")
|
472 |
+
return {'pdf': [], 'xml': []}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
473 |
|
474 |
+
def ask_question_selective(self, question: str, selected_files: List[str], n_results: int = 5) -> str:
|
475 |
+
"""Ask a question using only the selected files"""
|
476 |
+
try:
|
477 |
+
filter_dict = {
|
478 |
+
'source_file': {'$in': selected_files}
|
479 |
+
}
|
480 |
|
481 |
+
results = self.collection.query(
|
482 |
+
query_texts=[question],
|
483 |
+
n_results=n_results,
|
484 |
+
where=filter_dict,
|
485 |
+
include=["documents", "metadatas"]
|
486 |
+
)
|
|
|
|
|
487 |
|
488 |
+
if not results['documents'][0]:
|
489 |
+
return "No relevant content found in the selected files."
|
|
|
|
|
|
|
490 |
|
491 |
+
context = "\n\n".join(results['documents'][0])
|
|
|
|
|
|
|
|
|
|
|
492 |
|
493 |
+
prompt = f"""Based on the following content from the selected files, please answer this question: {question}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
494 |
|
495 |
+
Content:
|
496 |
+
{context}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
497 |
|
498 |
+
Please provide a direct answer based only on the information provided above."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
499 |
|
500 |
+
response = self.groq_client.chat.completions.create(
|
501 |
+
messages=[{"role": "user", "content": prompt}],
|
502 |
+
model="llama3-8b-8192",
|
503 |
+
temperature=0.2
|
504 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
505 |
|
506 |
+
return response.choices[0].message.content
|
507 |
+
|
508 |
+
except Exception as e:
|
509 |
+
return f"Error processing your question: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|