Spaces:
Sleeping
Sleeping
File size: 30,149 Bytes
d59e7dc c94951d d59e7dc c94951d d59e7dc c94951d d59e7dc c94951d d59e7dc c94951d d59e7dc c94951d d59e7dc c94951d d59e7dc c94951d d59e7dc 1d95373 d59e7dc c94951d d59e7dc c94951d d59e7dc c94951d d59e7dc c94951d d59e7dc c94951d d59e7dc c94951d d59e7dc c94951d d59e7dc 1d95373 d59e7dc b658c92 1d95373 b658c92 8fa9209 7cf0123 b658c92 7cf0123 8fa9209 7cf0123 d49c704 7cf0123 b658c92 1d95373 8fa9209 1d95373 8fa9209 1d95373 8fa9209 b658c92 8fa9209 b658c92 8fa9209 b658c92 8fa9209 1d95373 8fa9209 1d95373 8fa9209 1d95373 23f0de4 1d95373 8fa9209 1d95373 8fa9209 1d95373 8fa9209 845e556 8fa9209 1d95373 8fa9209 1d95373 8fa9209 1d95373 8fa9209 1d95373 8b2c9e1 bca0201 8b2c9e1 bca0201 8b2c9e1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 |
from typing import List, Dict, Union
from groq import Groq
import chromadb
import os
import datetime
import json
import xml.etree.ElementTree as ET
import nltk
from nltk.tokenize import sent_tokenize
import PyPDF2
from sentence_transformers import SentenceTransformer
class CustomEmbeddingFunction:
def __init__(self):
self.model = SentenceTransformer('all-MiniLM-L6-v2')
def __call__(self, input: List[str]) -> List[List[float]]:
embeddings = self.model.encode(input)
return embeddings.tolist()
class UnifiedDocumentProcessor:
def __init__(self, groq_api_key, collection_name="unified_content"):
"""Initialize the processor with necessary clients"""
self.groq_client = Groq(api_key=groq_api_key)
# XML-specific settings
self.max_elements_per_chunk = 50
# PDF-specific settings
self.pdf_chunk_size = 500
self.pdf_overlap = 50
# Initialize NLTK
self._initialize_nltk()
# Initialize ChromaDB with a single collection for all document types
self.chroma_client = chromadb.Client()
existing_collections = self.chroma_client.list_collections()
collection_exists = any(col.name == collection_name for col in existing_collections)
if collection_exists:
print(f"Using existing collection: {collection_name}")
self.collection = self.chroma_client.get_collection(
name=collection_name,
embedding_function=CustomEmbeddingFunction()
)
else:
print(f"Creating new collection: {collection_name}")
self.collection = self.chroma_client.create_collection(
name=collection_name,
embedding_function=CustomEmbeddingFunction()
)
def _initialize_nltk(self):
"""Ensure both NLTK resources are available."""
try:
nltk.download('punkt')
try:
nltk.data.find('tokenizers/punkt_tab')
except LookupError:
nltk.download('punkt_tab')
except Exception as e:
print(f"Warning: Error downloading NLTK resources: {str(e)}")
print("Falling back to basic sentence splitting...")
def _basic_sentence_split(self, text: str) -> List[str]:
"""Fallback method for sentence tokenization"""
sentences = []
current = ""
for char in text:
current += char
if char in ['.', '!', '?'] and len(current.strip()) > 0:
sentences.append(current.strip())
current = ""
if current.strip():
sentences.append(current.strip())
return sentences
def extract_text_from_pdf(self, pdf_path: str) -> str:
"""Extract text from PDF file"""
try:
text = ""
with open(pdf_path, 'rb') as file:
pdf_reader = PyPDF2.PdfReader(file)
for page in pdf_reader.pages:
text += page.extract_text() + " "
return text.strip()
except Exception as e:
raise Exception(f"Error extracting text from PDF: {str(e)}")
def chunk_text(self, text: str) -> List[str]:
"""Split text into chunks while preserving sentence boundaries"""
try:
sentences = sent_tokenize(text)
except Exception as e:
print(f"Warning: Using fallback sentence splitting: {str(e)}")
sentences = self._basic_sentence_split(text)
chunks = []
current_chunk = []
current_size = 0
for sentence in sentences:
words = sentence.split()
sentence_size = len(words)
if current_size + sentence_size > self.pdf_chunk_size:
if current_chunk:
chunks.append(' '.join(current_chunk))
overlap_words = current_chunk[-self.pdf_overlap:] if self.pdf_overlap > 0 else []
current_chunk = overlap_words + words
current_size = len(current_chunk)
else:
current_chunk = words
current_size = sentence_size
else:
current_chunk.extend(words)
current_size += sentence_size
if current_chunk:
chunks.append(' '.join(current_chunk))
return chunks
def process_xml_file(self, xml_file_path: str) -> Dict:
"""Process XML file with optimized batching and reduced database operations"""
try:
tree = ET.parse(xml_file_path)
root = tree.getroot()
# Process XML into chunks efficiently
chunks = []
paths = []
def process_element(element, current_path=""):
# Create element description
element_info = []
# Add basic information
element_info.append(f"Element: {element.tag}")
# Process namespace only if present
if '}' in element.tag:
namespace = element.tag.split('}')[0].strip('{')
element_info.append(f"Namespace: {namespace}")
# Process important attributes only
important_attrs = ['NodeId', 'BrowseName', 'DisplayName', 'Description', 'DataType']
attrs = {k: v for k, v in element.attrib.items() if k in important_attrs}
if attrs:
for key, value in attrs.items():
element_info.append(f"{key}: {value}")
# Process text content if meaningful
if element.text and element.text.strip():
element_info.append(f"Content: {element.text.strip()}")
# Create chunk text
chunk_text = " | ".join(element_info)
new_path = f"{current_path}/{element.tag}" if current_path else element.tag
chunks.append(chunk_text)
paths.append(new_path)
# Process children
for child in element:
process_element(child, new_path)
# Start processing from root
process_element(root)
print(f"Generated {len(chunks)} XML chunks")
# Batch process into database
batch_size = 100 # Increased batch size
results = []
for i in range(0, len(chunks), batch_size):
batch_end = min(i + batch_size, len(chunks))
batch_chunks = chunks[i:batch_end]
batch_paths = paths[i:batch_end]
# Prepare batch metadata
batch_metadata = [{
'source_file': os.path.basename(xml_file_path),
'content_type': 'xml',
'chunk_id': idx,
'total_chunks': len(chunks),
'xml_path': path,
'timestamp': str(datetime.datetime.now())
} for idx, path in enumerate(batch_paths, start=i)]
# Generate batch IDs
batch_ids = [
f"{os.path.basename(xml_file_path)}_xml_{idx}_{datetime.datetime.now().strftime('%Y%m%d_%H%M%S')}"
for idx in range(i, batch_end)
]
# Store batch in vector database
self.collection.add(
documents=batch_chunks,
metadatas=batch_metadata,
ids=batch_ids
)
# Track results
results.extend([{
'chunk': idx,
'success': True,
'doc_id': doc_id,
'text': text
} for idx, (doc_id, text) in enumerate(zip(batch_ids, batch_chunks), start=i)])
# Print progress
print(f"Processed chunks {i} to {batch_end} of {len(chunks)}")
return {
'success': True,
'total_chunks': len(chunks),
'results': results
}
except Exception as e:
print(f"Error processing XML: {str(e)}")
return {
'success': False,
'error': str(e)
}
def process_pdf_file(self, pdf_file_path: str) -> Dict:
"""Process PDF file with direct embedding"""
try:
full_text = self.extract_text_from_pdf(pdf_file_path)
chunks = self.chunk_text(full_text)
print(f"Split PDF into {len(chunks)} chunks")
results = []
for i, chunk in enumerate(chunks):
try:
metadata = {
'source_file': os.path.basename(pdf_file_path),
'content_type': 'pdf',
'chunk_id': i,
'total_chunks': len(chunks),
'timestamp': str(datetime.datetime.now()),
'chunk_size': len(chunk.split())
}
# Store directly in vector database
doc_id = self.store_in_vector_db(chunk, metadata)
results.append({
'chunk': i,
'success': True,
'doc_id': doc_id,
'text': chunk[:200] + "..." if len(chunk) > 200 else chunk
})
except Exception as e:
results.append({
'chunk': i,
'success': False,
'error': str(e)
})
return {
'success': True,
'total_chunks': len(chunks),
'results': results
}
except Exception as e:
return {
'success': False,
'error': str(e)
}
def store_in_vector_db(self, text: str, metadata: Dict) -> str:
"""Store content in vector database"""
doc_id = f"{metadata['source_file']}_{metadata['content_type']}_{metadata['chunk_id']}_{datetime.datetime.now().strftime('%Y%m%d_%H%M%S')}"
self.collection.add(
documents=[text],
metadatas=[metadata],
ids=[doc_id]
)
return doc_id
def get_available_files(self) -> Dict[str, List[str]]:
"""Get list of all files in the database"""
try:
all_entries = self.collection.get(
include=['metadatas']
)
files = {
'pdf': set(),
'xml': set()
}
for metadata in all_entries['metadatas']:
file_type = metadata['content_type']
file_name = metadata['source_file']
files[file_type].add(file_name)
return {
'pdf': sorted(list(files['pdf'])),
'xml': sorted(list(files['xml']))
}
except Exception as e:
print(f"Error getting available files: {str(e)}")
return {'pdf': [], 'xml': []}
def ask_question_selective(self, question: str, selected_files: List[str], n_results: int = 5) -> str:
"""Ask a question using only the selected files"""
try:
filter_dict = {
'source_file': {'$in': selected_files}
}
results = self.collection.query(
query_texts=[question],
n_results=n_results,
where=filter_dict,
include=["documents", "metadatas"]
)
if not results['documents'][0]:
return "No relevant content found in the selected files."
# Format answer based on content type
formatted_answer = []
for doc, meta in zip(results['documents'][0], results['metadatas'][0]):
if meta['content_type'] == 'xml':
formatted_answer.append(f"Found in XML path: {meta['xml_path']}\n{doc}")
else:
formatted_answer.append(doc)
# Create response using the matched content
prompt = f"""Based on these relevant sections, please answer: {question}
Relevant Content:
{' '.join(formatted_answer)}
Please provide a clear, concise answer based on the above content."""
response = self.groq_client.chat.completions.create(
messages=[{"role": "user", "content": prompt}],
model="llama3-8b-8192",
temperature=0.2
)
return response.choices[0].message.content
except Exception as e:
return f"Error processing your question: {str(e)}"
def get_detailed_context(self, question: str, selected_files: List[str], n_results: int = 5) -> Dict:
"""Get detailed context including path and metadata information"""
try:
filter_dict = {
'source_file': {'$in': selected_files}
}
results = self.collection.query(
query_texts=[question],
n_results=n_results,
where=filter_dict,
include=["documents", "metadatas", "distances"]
)
if not results['documents'][0]:
return {
'success': False,
'error': "No relevant content found"
}
detailed_results = []
for doc, meta, distance in zip(results['documents'][0], results['metadatas'][0], results['distances'][0]):
result_info = {
'content': doc,
'metadata': meta,
'similarity_score': round((1 - distance) * 100, 2), # Convert to percentage
'source_info': {
'file': meta['source_file'],
'type': meta['content_type'],
'path': meta.get('xml_path', 'N/A'),
'context': json.loads(meta['context']) if meta.get('context') else {}
}
}
detailed_results.append(result_info)
return {
'success': True,
'results': detailed_results,
'query': question
}
except Exception as e:
return {
'success': False,
'error': str(e)
}
def get_hierarchical_context(self, question: str, selected_files: List[str], n_results: int = 5) -> Dict:
"""Get hierarchical context for XML files including parent-child relationships"""
try:
# Get initial results
initial_results = self.get_detailed_context(question, selected_files, n_results)
if not initial_results['success']:
return initial_results
hierarchical_results = []
for result in initial_results['results']:
if result['metadata']['content_type'] == 'xml':
# Get parent elements
parent_path = '/'.join(result['source_info']['path'].split('/')[:-1])
if parent_path:
parent_filter = {
'source_file': {'$eq': result['metadata']['source_file']},
'xml_path': {'$eq': parent_path}
}
parent_results = self.collection.query(
query_texts=[""], # Empty query to get exact match
where=parent_filter,
include=["documents", "metadatas"],
n_results=1
)
if parent_results['documents'][0]:
result['parent_info'] = {
'content': parent_results['documents'][0][0],
'metadata': parent_results['metadatas'][0][0]
}
# Get all potential children
all_filter = {
'source_file': {'$eq': result['metadata']['source_file']}
}
all_results = self.collection.query(
query_texts=[""],
where=all_filter,
include=["documents", "metadatas"],
n_results=100
)
# Manually filter children
children_info = []
current_path = result['source_info']['path']
if all_results['documents'][0]:
for doc, meta in zip(all_results['documents'][0], all_results['metadatas'][0]):
child_path = meta.get('xml_path', '')
if (child_path.startswith(current_path + '/') and
len(child_path.split('/')) == len(current_path.split('/')) + 1):
children_info.append({
'content': doc,
'metadata': meta
})
if children_info:
result['children_info'] = children_info[:5]
hierarchical_results.append(result)
return {
'success': True,
'results': hierarchical_results,
'query': question
}
except Exception as e:
return {
'success': False,
'error': str(e)
}
def get_summary_and_details(self, question: str, selected_files: List[str]) -> Dict:
"""Get both a summary answer and detailed supporting information"""
try:
# Get hierarchical context first
detailed_results = self.get_hierarchical_context(question, selected_files)
if not detailed_results['success']:
return detailed_results
# Create summary prompt
relevant_content = []
for result in detailed_results['results']:
if result['metadata']['content_type'] == 'xml':
content_info = [
f"XML Path: {result['source_info']['path']}",
f"Content: {result['content']}"
]
if 'parent_info' in result:
content_info.append(f"Parent: {result['parent_info']['content']}")
if 'children_info' in result:
children_content = [child['content'] for child in result['children_info']]
content_info.append(f"Related Elements: {', '.join(children_content)}")
else:
content_info = [f"Content: {result['content']}"]
relevant_content.append('\n'.join(content_info))
summary_prompt = (
f"Based on the following content, please provide:\n"
"1. A concise answer to the question\n"
"2. Key supporting points\n"
"3. Related context if relevant\n\n"
f"Question: {question}\n\n"
f"Content:\n{chr(10).join(relevant_content)}"
)
response = self.groq_client.chat.completions.create(
messages=[{"role": "user", "content": summary_prompt}],
model="llama3-8b-8192",
temperature=0.2
)
return {
'success': True,
'summary': response.choices[0].message.content,
'details': detailed_results['results'],
'query': question
}
except Exception as e:
return {
'success': False,
'error': str(e)
}
def process_file(self, file_path: str) -> Dict:
"""Process any supported file type"""
try:
file_extension = os.path.splitext(file_path)[1].lower()
if file_extension == '.xml':
return self.process_xml_file(file_path)
elif file_extension == '.pdf':
return self.process_pdf_file(file_path)
else:
return {
'success': False,
'error': f'Unsupported file type: {file_extension}'
}
except Exception as e:
return {
'success': False,
'error': f'Error processing file: {str(e)}'
}
def calculate_detailed_score(self, distance: float, metadata: Dict, content: str, query: str) -> Dict:
"""
Calculate a detailed, multi-faceted relevance score
Components:
1. Vector Similarity (40%): Base similarity from embeddings
2. Content Match (20%): Direct term matching
3. Structural Relevance (20%): XML structure relevance (for XML files)
4. Context Completeness (10%): Completeness of metadata/context
5. Freshness (10%): How recent the content is
"""
try:
scores = {}
# 1. Vector Similarity Score (40%)
vector_similarity = 1 - distance # Convert distance to similarity
scores['vector_similarity'] = {
'score': vector_similarity,
'weight': 0.4,
'weighted_score': vector_similarity * 0.4
}
# 2. Content Match Score (20%)
content_match_score = self._calculate_content_match(content, query)
scores['content_match'] = {
'score': content_match_score,
'weight': 0.2,
'weighted_score': content_match_score * 0.2
}
# 3. Structural Relevance Score (20%)
if metadata['content_type'] == 'xml':
structural_score = self._calculate_structural_relevance(metadata)
else:
structural_score = 0.5 # Default for non-XML
scores['structural_relevance'] = {
'score': structural_score,
'weight': 0.2,
'weighted_score': structural_score * 0.2
}
# 4. Context Completeness Score (10%)
context_score = self._calculate_context_completeness(metadata)
scores['context_completeness'] = {
'score': context_score,
'weight': 0.1,
'weighted_score': context_score * 0.1
}
# 5. Freshness Score (10%)
freshness_score = self._calculate_freshness(metadata['timestamp'])
scores['freshness'] = {
'score': freshness_score,
'weight': 0.1,
'weighted_score': freshness_score * 0.1
}
# Calculate total score
total_score = sum(s['weighted_score'] for s in scores.values())
return {
'total_score': total_score,
'component_scores': scores,
'explanation': self._generate_score_explanation(scores)
}
except Exception as e:
print(f"Error in score calculation: {str(e)}")
return {
'total_score': 0.5,
'error': str(e)
}
def _calculate_content_match(self, content: str, query: str) -> float:
"""Calculate direct term matching score"""
try:
# Tokenize content and query
content_terms = set(content.lower().split())
query_terms = set(query.lower().split())
# Calculate overlap
matching_terms = content_terms.intersection(query_terms)
if not query_terms:
return 0.5
# Calculate scores for exact matches and partial matches
exact_match_score = len(matching_terms) / len(query_terms)
# Check for partial matches
partial_matches = 0
for q_term in query_terms:
for c_term in content_terms:
if q_term in c_term or c_term in q_term:
partial_matches += 0.5
partial_match_score = partial_matches / len(query_terms)
# Combine scores (70% exact matches, 30% partial matches)
return (exact_match_score * 0.7) + (partial_match_score * 0.3)
except Exception as e:
print(f"Error in content match calculation: {str(e)}")
return 0.5
def _calculate_structural_relevance(self, metadata: Dict) -> float:
"""Calculate structural relevance score for XML content"""
try:
score = 0.5 # Base score
if 'xml_path' in metadata:
path = metadata['xml_path']
# Score based on path depth (deeper paths might be more specific)
depth = len(path.split('/'))
depth_score = min(depth / 5, 1.0) # Normalize depth score
# Score based on element type
element_type = metadata.get('element_type', '')
type_scores = {
'UAObjectType': 0.9,
'UAVariableType': 0.9,
'UAObject': 0.8,
'UAVariable': 0.8,
'UAMethod': 0.7,
'UAView': 0.6,
'UAReferenceType': 0.7
}
type_score = type_scores.get(element_type, 0.5)
# Score based on context completeness
context = json.loads(metadata.get('context', '{}'))
context_score = len(context) / 10 if context else 0.5
# Combine scores
score = (depth_score * 0.3) + (type_score * 0.4) + (context_score * 0.3)
return score
except Exception as e:
print(f"Error in structural relevance calculation: {str(e)}")
return 0.5
def _calculate_context_completeness(self, metadata: Dict) -> float:
"""Calculate context completeness score"""
try:
expected_fields = {
'xml': ['xml_path', 'element_type', 'context', 'chunk_id', 'total_chunks'],
'pdf': ['chunk_id', 'total_chunks', 'chunk_size']
}
content_type = metadata.get('content_type', '')
if content_type not in expected_fields:
return 0.5
# Check for presence of expected fields
expected = expected_fields[content_type]
present_fields = sum(1 for field in expected if field in metadata)
# Calculate base completeness score
completeness = present_fields / len(expected)
# Add bonus for additional useful metadata
bonus = 0
if content_type == 'xml':
context = json.loads(metadata.get('context', '{}'))
if context:
bonus += 0.2
return min(completeness + bonus, 1.0)
except Exception as e:
print(f"Error in context completeness calculation: {str(e)}")
return 0.5
def _calculate_freshness(self, timestamp: str) -> float:
"""Calculate freshness score based on timestamp"""
try:
# Parse timestamp
doc_time = datetime.datetime.strptime(timestamp, '%Y-%m-%d %H:%M:%S.%f')
now = datetime.datetime.now()
# Calculate age in hours
age_hours = (now - doc_time).total_seconds() / 3600
# Score decreases with age (24 hours = 1 day)
if age_hours < 24:
return 1.0
elif age_hours < 168: # 1 week
return 0.8
elif age_hours < 720: # 1 month
return 0.6
else:
return 0.4
except Exception as e:
print(f"Error in freshness calculation: {str(e)}")
return 0.5
def _generate_score_explanation(self, scores: Dict) -> str:
"""Generate human-readable explanation of scores"""
try:
explanations = [
f"Total Score: {scores['total_score']:.2f}",
"\nComponent Scores:",
f"• Vector Similarity: {scores['vector_similarity']['score']:.2f} (40% weight)",
f"• Content Match: {scores['content_match']['score']:.2f} (20% weight)",
f"• Structural Relevance: {scores['structural_relevance']['score']:.2f} (20% weight)",
f"• Context Completeness: {scores['context_completeness']['score']:.2f} (10% weight)",
f"• Freshness: {scores['freshness']['score']:.2f} (10% weight)"
]
return "\n".join(explanations)
except Exception as e:
print(f"Error generating score explanation: {str(e)}")
return "Score explanation unavailable" |