Spaces:
Sleeping
Sleeping
File size: 20,071 Bytes
d59e7dc b658c92 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 |
from typing import List, Dict, Union
from groq import Groq
import chromadb
import os
import datetime
import json
import xml.etree.ElementTree as ET
import nltk
from nltk.tokenize import sent_tokenize
import PyPDF2
from sentence_transformers import SentenceTransformer
class CustomEmbeddingFunction:
def __init__(self):
self.model = SentenceTransformer('all-MiniLM-L6-v2')
def __call__(self, input: List[str]) -> List[List[float]]:
embeddings = self.model.encode(input)
return embeddings.tolist()
class UnifiedDocumentProcessor:
def __init__(self, groq_api_key, collection_name="unified_content"):
"""Initialize the processor with necessary clients"""
self.groq_client = Groq(api_key=groq_api_key)
# XML-specific settings
self.max_elements_per_chunk = 50
# PDF-specific settings
self.pdf_chunk_size = 500
self.pdf_overlap = 50
# Initialize NLTK
self._initialize_nltk()
# Initialize ChromaDB with a single collection for all document types
self.chroma_client = chromadb.Client()
existing_collections = self.chroma_client.list_collections()
collection_exists = any(col.name == collection_name for col in existing_collections)
if collection_exists:
print(f"Using existing collection: {collection_name}")
self.collection = self.chroma_client.get_collection(
name=collection_name,
embedding_function=CustomEmbeddingFunction()
)
else:
print(f"Creating new collection: {collection_name}")
self.collection = self.chroma_client.create_collection(
name=collection_name,
embedding_function=CustomEmbeddingFunction()
)
def _initialize_nltk(self):
"""Ensure both NLTK resources are available."""
try:
nltk.download('punkt')
try:
nltk.data.find('tokenizers/punkt_tab')
except LookupError:
nltk.download('punkt_tab')
except Exception as e:
print(f"Warning: Error downloading NLTK resources: {str(e)}")
print("Falling back to basic sentence splitting...")
def _basic_sentence_split(self, text: str) -> List[str]:
"""Fallback method for sentence tokenization"""
sentences = []
current = ""
for char in text:
current += char
if char in ['.', '!', '?'] and len(current.strip()) > 0:
sentences.append(current.strip())
current = ""
if current.strip():
sentences.append(current.strip())
return sentences
def extract_text_from_pdf(self, pdf_path: str) -> str:
"""Extract text from PDF file"""
try:
text = ""
with open(pdf_path, 'rb') as file:
pdf_reader = PyPDF2.PdfReader(file)
for page in pdf_reader.pages:
text += page.extract_text() + " "
return text.strip()
except Exception as e:
raise Exception(f"Error extracting text from PDF: {str(e)}")
def chunk_text(self, text: str) -> List[str]:
"""Split text into chunks while preserving sentence boundaries"""
try:
sentences = sent_tokenize(text)
except Exception as e:
print(f"Warning: Using fallback sentence splitting: {str(e)}")
sentences = self._basic_sentence_split(text)
chunks = []
current_chunk = []
current_size = 0
for sentence in sentences:
words = sentence.split()
sentence_size = len(words)
if current_size + sentence_size > self.pdf_chunk_size:
if current_chunk:
chunks.append(' '.join(current_chunk))
overlap_words = current_chunk[-self.pdf_overlap:] if self.pdf_overlap > 0 else []
current_chunk = overlap_words + words
current_size = len(current_chunk)
else:
current_chunk = words
current_size = sentence_size
else:
current_chunk.extend(words)
current_size += sentence_size
if current_chunk:
chunks.append(' '.join(current_chunk))
return chunks
def store_in_vector_db(self, text: str, metadata: Dict) -> str:
"""Store content in vector database"""
doc_id = f"{metadata['source_file']}_{metadata['content_type']}_{metadata['chunk_id']}_{datetime.datetime.now().strftime('%Y%m%d_%H%M%S')}"
self.collection.add(
documents=[text],
metadatas=[metadata],
ids=[doc_id]
)
return doc_id
def process_file(self, file_path: str) -> Dict:
"""Process any supported file type"""
try:
file_extension = os.path.splitext(file_path)[1].lower()
if file_extension == '.xml':
return self.process_xml_file(file_path)
elif file_extension == '.pdf':
return self.process_pdf_file(file_path)
else:
return {
'success': False,
'error': f'Unsupported file type: {file_extension}'
}
except Exception as e:
return {
'success': False,
'error': f'Error processing file: {str(e)}'
}
def process_xml_file(self, xml_file_path: str) -> Dict:
"""Process XML file with direct embedding"""
try:
tree = ET.parse(xml_file_path)
root = tree.getroot()
# Process XML into semantic chunks with context
chunks = []
current_path = []
def process_element(element, context=None):
if context is None:
context = {}
# Create element description
current_path.append(element.tag)
element_info = []
# Add tag information
element_info.append(f"Element: {element.tag}")
element_info.append(f"Path: {'/' + '/'.join(current_path)}")
# Process namespace if present
if '}' in element.tag:
namespace = element.tag.split('}')[0].strip('{')
element_info.append(f"Namespace: {namespace}")
# Process attributes with improved structure
if element.attrib:
for key, value in element.attrib.items():
element_info.append(f"Attribute - {key}: {value}")
# Process text content
if element.text and element.text.strip():
element_info.append(f"Content: {element.text.strip()}")
# Create chunk text
chunk_text = " | ".join(element_info)
# Store chunk with metadata
chunks.append({
'text': chunk_text,
'path': '/' + '/'.join(current_path),
'context': context.copy(),
'element_type': element.tag
})
# Process children
child_context = context.copy()
if element.attrib:
child_context[element.tag] = element.attrib
for child in element:
process_element(child, child_context)
current_path.pop()
# Start processing from root
process_element(root)
print(f"Generated {len(chunks)} XML chunks")
results = []
for i, chunk in enumerate(chunks):
try:
metadata = {
'source_file': os.path.basename(xml_file_path),
'content_type': 'xml',
'chunk_id': i,
'total_chunks': len(chunks),
'xml_path': chunk['path'],
'element_type': chunk['element_type'],
'context': json.dumps(chunk['context']),
'timestamp': str(datetime.datetime.now())
}
# Store directly in vector database
doc_id = self.store_in_vector_db(chunk['text'], metadata)
results.append({
'chunk': i,
'success': True,
'doc_id': doc_id,
'text': chunk['text']
})
except Exception as e:
print(f"Error processing chunk {i}: {str(e)}")
results.append({
'chunk': i,
'success': False,
'error': str(e)
})
return {
'success': True,
'total_chunks': len(chunks),
'results': results
}
except Exception as e:
return {
'success': False,
'error': str(e)
}
def process_pdf_file(self, pdf_file_path: str) -> Dict:
"""Process PDF file with direct embedding"""
try:
full_text = self.extract_text_from_pdf(pdf_file_path)
chunks = self.chunk_text(full_text)
print(f"Split PDF into {len(chunks)} chunks")
results = []
for i, chunk in enumerate(chunks):
try:
metadata = {
'source_file': os.path.basename(pdf_file_path),
'content_type': 'pdf',
'chunk_id': i,
'total_chunks': len(chunks),
'timestamp': str(datetime.datetime.now()),
'chunk_size': len(chunk.split())
}
# Store directly in vector database
doc_id = self.store_in_vector_db(chunk, metadata)
results.append({
'chunk': i,
'success': True,
'doc_id': doc_id,
'text': chunk[:200] + "..." if len(chunk) > 200 else chunk
})
except Exception as e:
results.append({
'chunk': i,
'success': False,
'error': str(e)
})
return {
'success': True,
'total_chunks': len(chunks),
'results': results
}
except Exception as e:
return {
'success': False,
'error': str(e)
}
def get_available_files(self) -> Dict[str, List[str]]:
"""Get list of all files in the database"""
try:
all_entries = self.collection.get(
include=['metadatas']
)
files = {
'pdf': set(),
'xml': set()
}
for metadata in all_entries['metadatas']:
file_type = metadata['content_type']
file_name = metadata['source_file']
files[file_type].add(file_name)
return {
'pdf': sorted(list(files['pdf'])),
'xml': sorted(list(files['xml']))
}
except Exception as e:
print(f"Error getting available files: {str(e)}")
return {'pdf': [], 'xml': []}
def ask_question_selective(self, question: str, selected_files: List[str], n_results: int = 5) -> str:
"""Ask a question using only the selected files"""
try:
filter_dict = {
'source_file': {'$in': selected_files}
}
results = self.collection.query(
query_texts=[question],
n_results=n_results,
where=filter_dict,
include=["documents", "metadatas"]
)
if not results['documents'][0]:
return "No relevant content found in the selected files."
# Format answer based on content type
formatted_answer = []
for doc, meta in zip(results['documents'][0], results['metadatas'][0]):
if meta['content_type'] == 'xml':
formatted_answer.append(f"Found in XML path: {meta['xml_path']}\n{doc}")
else:
formatted_answer.append(doc)
# Create response using the matched content
prompt = f"""Based on these relevant sections, please answer: {question}
Relevant Content:
{' '.join(formatted_answer)}
Please provide a clear, concise answer based on the above content."""
response = self.groq_client.chat.completions.create(
messages=[{"role": "user", "content": prompt}],
model="llama3-8b-8192",
temperature=0.2
)
return response.choices[0].message.content
except Exception as e:
return f"Error processing your question: {str(e)}"
def get_detailed_context(self, question: str, selected_files: List[str], n_results: int = 5) -> Dict:
"""Get detailed context including path and metadata information"""
try:
filter_dict = {
'source_file': {'$in': selected_files}
}
results = self.collection.query(
query_texts=[question],
n_results=n_results,
where=filter_dict,
include=["documents", "metadatas", "distances"]
)
if not results['documents'][0]:
return {
'success': False,
'error': "No relevant content found"
}
detailed_results = []
for doc, meta, distance in zip(results['documents'][0], results['metadatas'][0], results['distances'][0]):
result_info = {
'content': doc,
'metadata': meta,
'relevance_score': 1 - distance, # Convert distance to similarity score
'source_info': {
'file': meta['source_file'],
'type': meta['content_type'],
'path': meta.get('xml_path', 'N/A'), # Only for XML files
'context': json.loads(meta['context']) if meta.get('context') else {}
}
}
detailed_results.append(result_info)
return {
'success': True,
'results': detailed_results,
'query': question
}
except Exception as e:
return {
'success': False,
'error': str(e)
}
def get_hierarchical_context(self, question: str, selected_files: List[str], n_results: int = 5) -> Dict:
"""Get hierarchical context for XML files including parent-child relationships"""
try:
# Get initial results
initial_results = self.get_detailed_context(question, selected_files, n_results)
if not initial_results['success']:
return initial_results
hierarchical_results = []
for result in initial_results['results']:
if result['metadata']['content_type'] == 'xml':
# Get parent elements
parent_path = '/'.join(result['source_info']['path'].split('/')[:-1])
if parent_path:
parent_filter = {
'source_file': result['metadata']['source_file'],
'xml_path': parent_path
}
parent_results = self.collection.query(
query_texts=[""], # Empty query to get exact match
where=parent_filter,
include=["documents", "metadatas"],
n_results=1
)
if parent_results['documents'][0]:
result['parent_info'] = {
'content': parent_results['documents'][0][0],
'metadata': parent_results['metadatas'][0][0]
}
# Get immediate children
child_path_prefix = result['source_info']['path'] + '/'
child_filter = {
'source_file': result['metadata']['source_file'],
'xml_path': {'$contains': child_path_prefix}
}
child_results = self.collection.query(
query_texts=[""], # Empty query to get exact matches
where=child_filter,
include=["documents", "metadatas"],
n_results=5
)
if child_results['documents'][0]:
result['children_info'] = [{
'content': doc,
'metadata': meta
} for doc, meta in zip(child_results['documents'][0], child_results['metadatas'][0])]
hierarchical_results.append(result)
return {
'success': True,
'results': hierarchical_results,
'query': question
}
except Exception as e:
return {
'success': False,
'error': str(e)
}
def get_summary_and_details(self, question: str, selected_files: List[str]) -> Dict:
"""Get both a summary answer and detailed supporting information"""
try:
# Get hierarchical context first
detailed_results = self.get_hierarchical_context(question, selected_files)
if not detailed_results['success']:
return detailed_results
# Create summary prompt
relevant_content = []
for result in detailed_results['results']:
if result['metadata']['content_type'] == 'xml':
content_info = [
f"XML Path: {result['source_info']['path']}",
f"Content: {result['content']}"
]
if 'parent_info' in result:
content_info.append(f"Parent: {result['parent_info']['content']}")
if 'children_info' in result:
children_content = [child['content'] for child in result['children_info']]
content_info.append(f"Related Elements: {', '.join(children_content)}")
else:
content_info = [f"Content: {result['content']}"]
relevant_content.append('\n'.join(content_info))
summary_prompt = f"""Based on the following content, please provide:
1. A concise answer to the question
2. Key supporting points
3. Related context if relevant
Question: {question}
Content:
{'\n\n'.join(relevant_content)}
"""
response = self.groq_client.chat.completions.create(
messages=[{"role": "user", "content": summary_prompt}],
model="llama3-8b-8192",
temperature=0.2
)
return {
'success': True,
'summary': response.choices[0].message.content,
'details': detailed_results['results'],
'query': question
}
except Exception as e:
return {
'success': False,
'error': str(e)
} |