Spaces:
Running
Running
Update main.py
Browse files
main.py
CHANGED
@@ -23,9 +23,12 @@ def load_models():
|
|
23 |
with open('models/SVM_model_untrue_inform_detection_tfidf_bg_0.96_F1_score_3Y_N_Q1_082023.pkl', 'rb') as f:
|
24 |
st.session_state.untrue_detector = pickle.load(f)
|
25 |
|
26 |
-
st.session_state.
|
27 |
model=BertForSequenceClassification.from_pretrained("TRACES/private-bert", use_auth_token=os.environ['ACCESS_TOKEN'], num_labels=2),
|
28 |
tokenizer=AutoTokenizer.from_pretrained("TRACES/private-bert", use_auth_token=os.environ['ACCESS_TOKEN']))
|
|
|
|
|
|
|
29 |
|
30 |
|
31 |
def load_content():
|
@@ -49,13 +52,15 @@ if all([
|
|
49 |
'untrue_detector_result' not in st.session_state,
|
50 |
'bert_result' not in st.session_state
|
51 |
]):
|
52 |
-
st.session_state.gpt_detector_result = ''
|
53 |
-
st.session_state.gpt_detector_probability = [1, 0]
|
54 |
|
55 |
st.session_state.untrue_detector_result = ''
|
56 |
st.session_state.untrue_detector_probability = 1
|
57 |
|
58 |
-
st.session_state.
|
|
|
|
|
59 |
|
60 |
content = load_content()
|
61 |
if 'loaded' not in st.session_state:
|
@@ -92,25 +97,27 @@ if st.session_state.agree:
|
|
92 |
content['text_placeholder'][st.session_state.lang]).strip('\n')
|
93 |
|
94 |
if st.button(content['analyze_button'][st.session_state.lang]):
|
95 |
-
user_tfidf_disinformation = st.session_state.tfidf_vectorizer_disinformation.transform([user_input])
|
96 |
-
st.session_state.gpt_detector_result = st.session_state.gpt_detector.predict(user_tfidf_disinformation)[0]
|
97 |
-
st.session_state.gpt_detector_probability = st.session_state.gpt_detector.predict_proba(user_tfidf_disinformation)[0]
|
98 |
|
99 |
user_tfidf_untrue_inf = st.session_state.tfidf_vectorizer_untrue_inf.transform([user_input])
|
100 |
st.session_state.untrue_detector_result = st.session_state.untrue_detector.predict(user_tfidf_untrue_inf)[0]
|
101 |
st.session_state.untrue_detector_probability = st.session_state.untrue_detector.predict_proba(user_tfidf_untrue_inf)[0]
|
102 |
st.session_state.untrue_detector_probability = max(st.session_state.untrue_detector_probability[0], st.session_state.untrue_detector_probability[1])
|
103 |
|
104 |
-
st.session_state.
|
|
|
|
|
105 |
|
106 |
-
if st.session_state.gpt_detector_result == 1:
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
else:
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
|
115 |
if st.session_state.untrue_detector_result == 0:
|
116 |
st.warning(content['untrue_getect_yes'][st.session_state.lang] +
|
@@ -121,14 +128,23 @@ if st.session_state.agree:
|
|
121 |
str(round(st.session_state.untrue_detector_probability * 100, 2)) +
|
122 |
content['untrue_no_proba'][st.session_state.lang], icon="✅")
|
123 |
|
124 |
-
if st.session_state.
|
125 |
st.warning(content['bert_yes_1'][st.session_state.lang] +
|
126 |
-
str(round(st.session_state.
|
127 |
content['bert_yes_2'][st.session_state.lang], icon = "⚠️")
|
128 |
else:
|
129 |
st.success(content['bert_no_1'][st.session_state.lang] +
|
130 |
-
str(round(st.session_state.
|
131 |
content['bert_no_2'][st.session_state.lang], icon="✅")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
|
133 |
st.info(content['disinformation_definition'][st.session_state.lang], icon="ℹ️")
|
134 |
|
|
|
23 |
with open('models/SVM_model_untrue_inform_detection_tfidf_bg_0.96_F1_score_3Y_N_Q1_082023.pkl', 'rb') as f:
|
24 |
st.session_state.untrue_detector = pickle.load(f)
|
25 |
|
26 |
+
st.session_state.bert_disinfo = pipeline(task="text-classification",
|
27 |
model=BertForSequenceClassification.from_pretrained("TRACES/private-bert", use_auth_token=os.environ['ACCESS_TOKEN'], num_labels=2),
|
28 |
tokenizer=AutoTokenizer.from_pretrained("TRACES/private-bert", use_auth_token=os.environ['ACCESS_TOKEN']))
|
29 |
+
st.session_state.bert_gpt = pipeline(task="text-classification",
|
30 |
+
model=BertForSequenceClassification.from_pretrained("usmiva/bert-deepfake-bg", num_labels=2),
|
31 |
+
tokenizer=AutoTokenizer.from_pretrained("usmiva/bert-deepfake-bg"))
|
32 |
|
33 |
|
34 |
def load_content():
|
|
|
52 |
'untrue_detector_result' not in st.session_state,
|
53 |
'bert_result' not in st.session_state
|
54 |
]):
|
55 |
+
# st.session_state.gpt_detector_result = ''
|
56 |
+
# st.session_state.gpt_detector_probability = [1, 0]
|
57 |
|
58 |
st.session_state.untrue_detector_result = ''
|
59 |
st.session_state.untrue_detector_probability = 1
|
60 |
|
61 |
+
st.session_state.bert_disinfo_result = [{'label': '', 'score': 1}]
|
62 |
+
|
63 |
+
st.session_state.bert_gpt_result = [{'label': '', 'score': 1}]
|
64 |
|
65 |
content = load_content()
|
66 |
if 'loaded' not in st.session_state:
|
|
|
97 |
content['text_placeholder'][st.session_state.lang]).strip('\n')
|
98 |
|
99 |
if st.button(content['analyze_button'][st.session_state.lang]):
|
100 |
+
# user_tfidf_disinformation = st.session_state.tfidf_vectorizer_disinformation.transform([user_input])
|
101 |
+
# st.session_state.gpt_detector_result = st.session_state.gpt_detector.predict(user_tfidf_disinformation)[0]
|
102 |
+
# st.session_state.gpt_detector_probability = st.session_state.gpt_detector.predict_proba(user_tfidf_disinformation)[0]
|
103 |
|
104 |
user_tfidf_untrue_inf = st.session_state.tfidf_vectorizer_untrue_inf.transform([user_input])
|
105 |
st.session_state.untrue_detector_result = st.session_state.untrue_detector.predict(user_tfidf_untrue_inf)[0]
|
106 |
st.session_state.untrue_detector_probability = st.session_state.untrue_detector.predict_proba(user_tfidf_untrue_inf)[0]
|
107 |
st.session_state.untrue_detector_probability = max(st.session_state.untrue_detector_probability[0], st.session_state.untrue_detector_probability[1])
|
108 |
|
109 |
+
st.session_state.bert_disinfo_result = st.session_state.bert_disinfo(user_input)
|
110 |
+
|
111 |
+
st.session_state.bert_gpt_result = st.session_state.bert_gpt(user_input)
|
112 |
|
113 |
+
# if st.session_state.gpt_detector_result == 1:
|
114 |
+
# st.warning(content['gpt_getect_yes'][st.session_state.lang] +
|
115 |
+
# str(round(st.session_state.gpt_detector_probability[1] * 100, 2)) +
|
116 |
+
# content['gpt_yes_proba'][st.session_state.lang], icon="⚠️")
|
117 |
+
# else:
|
118 |
+
# st.success(content['gpt_getect_no'][st.session_state.lang] +
|
119 |
+
# str(round(st.session_state.gpt_detector_probability[0] * 100, 2)) +
|
120 |
+
# content['gpt_no_proba'][st.session_state.lang], icon="✅")
|
121 |
|
122 |
if st.session_state.untrue_detector_result == 0:
|
123 |
st.warning(content['untrue_getect_yes'][st.session_state.lang] +
|
|
|
128 |
str(round(st.session_state.untrue_detector_probability * 100, 2)) +
|
129 |
content['untrue_no_proba'][st.session_state.lang], icon="✅")
|
130 |
|
131 |
+
if st.session_state.bert_disinfo_resultt[0]['label'] == 'LABEL_1':
|
132 |
st.warning(content['bert_yes_1'][st.session_state.lang] +
|
133 |
+
str(round(st.session_state.bert_disinfo_result[0]['score'] * 100, 2)) +
|
134 |
content['bert_yes_2'][st.session_state.lang], icon = "⚠️")
|
135 |
else:
|
136 |
st.success(content['bert_no_1'][st.session_state.lang] +
|
137 |
+
str(round(st.session_state.bert_disinfo_result[0]['score'] * 100, 2)) +
|
138 |
content['bert_no_2'][st.session_state.lang], icon="✅")
|
139 |
+
|
140 |
+
if st.session_state.bert_gpt_result[0]['label'] == 'LABEL_1':
|
141 |
+
st.warning(content['bert_gpt_1'][st.session_state.lang] +
|
142 |
+
str(round(st.session_state.bert_gpt_result[0]['score'] * 100, 2)) +
|
143 |
+
content['bert_gpt_2'][st.session_state.lang], icon = "⚠️")
|
144 |
+
else:
|
145 |
+
st.success(content['bert_human_1'][st.session_state.lang] +
|
146 |
+
str(round(st.session_state.bert_gpt_result[0]['score'] * 100, 2)) +
|
147 |
+
content['bert_human_2'][st.session_state.lang], icon="✅")
|
148 |
|
149 |
st.info(content['disinformation_definition'][st.session_state.lang], icon="ℹ️")
|
150 |
|