import gradio as gr from transformers import pipeline # Load the question answering model qa = pipeline("question-answering") # Define the function to generate the answer def generate_answer(context, question): result = qa(question=question, context=context) return result["answer"] # Define the Gradio interface inputs = [ gr.components.Textbox(label="Enter some context"), gr.components.Textbox(label="Enter a question") ] outputs = gr.components.Textbox(label="Answer") title = "Question Answering with Hugging Face" description = "Answer questions based on a given context using Hugging Face's question answering model" iface = gr.Interface(fn=generate_answer, inputs=inputs, outputs=outputs, title=title, description=description) # Launch the Gradio app iface.launch()