import os
import spaces
os.environ['LOWRES_RESIZE'] = '384x32'
os.environ['HIGHRES_BASE'] = '0x32'
os.environ['VIDEO_RESIZE'] = "0x64"
os.environ['VIDEO_MAXRES'] = "480"
os.environ['VIDEO_MINRES'] = "288"
os.environ['MAXRES'] = '1536'
os.environ['MINRES'] = '0'
os.environ['REGIONAL_POOL'] = '2x'
os.environ['FORCE_NO_DOWNSAMPLE'] = '1'
os.environ['LOAD_VISION_EARLY'] = '1'
os.environ['SKIP_LOAD_VIT'] = '1'

# os.environ["CUDA_LAUNCH_BLOCKING"]='1'

import gradio as gr
import torch
print(torch.cuda.is_available())
import re
from decord import VideoReader, cpu
from PIL import Image
import numpy as np
import transformers
import moviepy.editor as mp
from typing import Dict, Optional, Sequence, List
import librosa
import whisper

import torchaudio
import subprocess
def install_cuda_toolkit():
    # CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_linux.run"
    CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/12.2.0/local_installers/cuda_12.2.0_535.54.03_linux.run"
    CUDA_TOOLKIT_FILE = "/tmp/%s" % os.path.basename(CUDA_TOOLKIT_URL)
    subprocess.call(["wget", "-q", CUDA_TOOLKIT_URL, "-O", CUDA_TOOLKIT_FILE])
    subprocess.call(["chmod", "+x", CUDA_TOOLKIT_FILE])
    subprocess.call([CUDA_TOOLKIT_FILE, "--silent", "--toolkit"])

    os.environ["CUDA_HOME"] = "/usr/local/cuda"
    os.environ["PATH"] = "%s/bin:%s" % (os.environ["CUDA_HOME"], os.environ["PATH"])
    os.environ["LD_LIBRARY_PATH"] = "%s/lib:%s" % (
        os.environ["CUDA_HOME"],
        "" if "LD_LIBRARY_PATH" not in os.environ else os.environ["LD_LIBRARY_PATH"],
    )
    # Fix: arch_list[-1] += '+PTX'; IndexError: list index out of range
    os.environ["TORCH_CUDA_ARCH_LIST"] = "8.0;8.6"

install_cuda_toolkit()
subprocess.run('pip install flash-attn==2.5.9.post1 --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "True"}, shell=True)

import sys
sys.path.append('./ola/CosyVoice_main/')
from ola.conversation import conv_templates, SeparatorStyle
from ola.model.builder import load_pretrained_model
from ola.utils import disable_torch_init
from ola.datasets.preprocess import tokenizer_image_token, tokenizer_speech_image_token, tokenizer_speech_question_image_token
from ola.mm_utils import get_model_name_from_path, KeywordsStoppingCriteria, process_anyres_video, process_anyres_highres_image_genli
from ola.constants import IGNORE_INDEX, DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX, DEFAULT_SPEECH_TOKEN
# from ola.CosyVoice_main.cosyvoice.cli.cosyvoice import CosyVoice

from huggingface_hub import hf_hub_download

whisper_path = hf_hub_download(
    repo_id="THUdyh/Ola-7b",
    filename="large-v3.pt",
    local_dir="./"
)

beats_path = hf_hub_download(
    repo_id="THUdyh/Ola-7b",
    filename="BEATs_iter3_plus_AS2M_finetuned_on_AS2M_cpt2.pt",
    local_dir="./"
)

model_path = "THUdyh/Ola-7b"
tokenizer, model, image_processor, _ = load_pretrained_model(model_path, None)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = model.to(device).eval()
model = model.bfloat16()

# tts_model = CosyVoice('iic/CosyVoice-300M-SFT', load_jit=False, fp16=True)
# tts_model = CosyVoice('FunAudioLLM/CosyVoice-300M-SFT', load_jit=True, fp16=True)
OUTPUT_SPEECH=False

USE_SPEECH=False

title_markdown = """
<div style="display: flex; justify-content: left; align-items: center; text-align: left; background: linear-gradient(45deg, rgba(255,248,240, 0.8), rgba(255,135,36,0.3)); border-radius: 10px; box-shadow: 0 8px 16px 0 rgba(0,0,0,0.1);">  <a href="https://ola-omni.github.io/"" style="margin-right: 20px; text-decoration: none; display: flex; align-items: center;">
    <img src="https://ola-omni.github.io/static/images/ola-icon-2.png" alt="Ola" style="max-width: 80px; height: auto; border-radius: 10px;">
  </a>
  <div>
    <h2 ><a href="https://github.com/Ola-Omni/Ola">Ola: Pushing the Frontiers of Omni-Modal Language Model with Progressive Modality Alignment</a> </h2>
    <h5 style="margin: 0;"><a href="https://ola-omni.github.io/">Project Page</a> | <a href="https://github.com/Ola-Omni/Ola">Github</a> | <a href="https://huggingface.co/THUdyh/Ola-7b">Huggingface</a> | <a href="https://arxiv.org/abs/2502.04328">Paper</a> </h5>
  </div>
</div>
"""

bibtext = """
### Citation
```
@article{liu2025ola,
title={Ola: Pushing the Frontiers of Omni-Modal Language Model with Progressive Modality Alignment},
author={Liu, Zuyan and Dong, Yuhao and Wang, Jiahui and Liu, Ziwei and Hu, Winston and Lu, Jiwen and Rao, Yongming},
journal={arXiv preprint arXiv:2502.04328},
year={2025}
}
```
"""
cur_dir = os.path.dirname(os.path.abspath(__file__))


def load_audio(audio_file_name):
    speech_wav, samplerate = librosa.load(audio_file_name, sr=16000)
    if len(speech_wav.shape) > 1:
        speech_wav = speech_wav[:, 0]
    speech_wav = speech_wav.astype(np.float32)
    CHUNK_LIM = 480000
    SAMPLE_RATE = 16000
    speechs = []
    speech_wavs = []

    if len(speech_wav) <= CHUNK_LIM:
        speech = whisper.pad_or_trim(speech_wav)
        speech_wav = whisper.pad_or_trim(speech_wav)
        speechs.append(speech)
        speech_wavs.append(torch.from_numpy(speech_wav).unsqueeze(0))
    else:
        for i in range(0, len(speech_wav), CHUNK_LIM):
            chunk = speech_wav[i : i + CHUNK_LIM]
            if len(chunk) < CHUNK_LIM:
                chunk = whisper.pad_or_trim(chunk)
            speechs.append(chunk)
            speech_wavs.append(torch.from_numpy(chunk).unsqueeze(0))
    mels = []
    for chunk in speechs:
        chunk = whisper.log_mel_spectrogram(chunk, n_mels=128).permute(1, 0).unsqueeze(0)
        mels.append(chunk)

    mels = torch.cat(mels, dim=0)
    speech_wavs = torch.cat(speech_wavs, dim=0)
    if mels.shape[0] > 25:
        mels = mels[:25]
        speech_wavs = speech_wavs[:25]

    speech_length = torch.LongTensor([mels.shape[1]] * mels.shape[0])
    speech_chunks = torch.LongTensor([mels.shape[0]])
    return mels, speech_length, speech_chunks, speech_wavs

def extract_audio(videos_file_path):
    my_clip = mp.VideoFileClip(videos_file_path)
    return my_clip.audio

@spaces.GPU(duration=120)
def ola_inference(multimodal, audio_path):
    try:
        visual = multimodal["files"][0]
    except:
        visual = None
    text = multimodal["text"]
    if visual and visual.endswith("image2.png"):
        modality = "video"
        visual = f"{cur_dir}/case/case1.mp4"
    if visual and visual.endswith(".mp4"):
        modality = "video"
    elif visual:
        modality = "image"
    elif audio_path is not None:
        modality = "text"
    
    # input audio and video, do not parse audio in the video, else parse audio in the video
    if audio_path:
        USE_SPEECH = True
    elif modality == "video":
        USE_SPEECH = True
    else:
        USE_SPEECH = False
    
    speechs = []
    speech_lengths = []
    speech_wavs = []
    speech_chunks = []
    if modality == "video":
        vr = VideoReader(visual, ctx=cpu(0))
        total_frame_num = len(vr)
        fps = round(vr.get_avg_fps())
        uniform_sampled_frames = np.linspace(0, total_frame_num - 1, 64, dtype=int)
        frame_idx = uniform_sampled_frames.tolist()
        spare_frames = vr.get_batch(frame_idx).asnumpy()
        video = [Image.fromarray(frame) for frame in spare_frames]
    elif modality == "image":
        image = [Image.open(visual)]
        image_sizes = [image[0].size]
    else:
        images = [torch.zeros(1, 3, 224, 224).to(dtype=torch.bfloat16, device='cuda', non_blocking=True)]
        images_highres = [torch.zeros(1, 3, 224, 224).to(dtype=torch.bfloat16, device='cuda', non_blocking=True)]
        image_sizes = [(224, 224)]

    if USE_SPEECH and audio_path:
        audio_path = audio_path
        speech, speech_length, speech_chunk, speech_wav = load_audio(audio_path)
        speechs.append(speech.bfloat16().to(device))
        speech_lengths.append(speech_length.to(device))
        speech_chunks.append(speech_chunk.to(device))
        speech_wavs.append(speech_wav.to(device))
        print('load audio')
    elif USE_SPEECH and not audio_path:
        # parse audio in the video
        audio = extract_audio(visual)
        audio.write_audiofile("./video_audio.wav")
        video_audio_path = './video_audio.wav'
        speech, speech_length, speech_chunk, speech_wav = load_audio(video_audio_path)
        speechs.append(speech.bfloat16().to(device))
        speech_lengths.append(speech_length.to(device))
        speech_chunks.append(speech_chunk.to(device))
        speech_wavs.append(speech_wav.to(device))
    else:
        speechs = [torch.zeros(1, 3000, 128).bfloat16().to(device)]
        speech_lengths = [torch.LongTensor([3000]).to(device)]
        speech_wavs = [torch.zeros([1, 480000]).to(device)]
        speech_chunks = [torch.LongTensor([1]).to(device)]
    
    conv_mode = "qwen_1_5"
    if text:
        qs = text
    else:
        qs = ''
    if USE_SPEECH and audio_path and modality == "image":
        if text:
            return "ERROR: Please provide either text or audio question for image, not both.", None
        qs = DEFAULT_IMAGE_TOKEN + "\n" + "User's question in speech: " + DEFAULT_SPEECH_TOKEN + '\n'
    elif USE_SPEECH and modality == "video":
        qs = DEFAULT_SPEECH_TOKEN + DEFAULT_IMAGE_TOKEN + "\n" + qs
    elif USE_SPEECH and audio_path: # audio + text
        qs = DEFAULT_SPEECH_TOKEN + "\n" + qs
    elif modality == "video" or modality == "image":
        qs = DEFAULT_IMAGE_TOKEN + "\n" + qs
    elif text: # text
        qs = qs

    conv = conv_templates[conv_mode].copy()
    conv.append_message(conv.roles[0], qs)
    conv.append_message(conv.roles[1], None)
    prompt = conv.get_prompt()
    if USE_SPEECH and audio_path:
        input_ids = tokenizer_speech_question_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(device)
    elif USE_SPEECH:
        input_ids = tokenizer_speech_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(device)
    else:
        input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(device)

    if modality == "video":
        video_processed = []
        for idx, frame in enumerate(video):
            image_processor.do_resize = False
            image_processor.do_center_crop = False
            frame = process_anyres_video(frame, image_processor)

            if frame_idx is not None and idx in frame_idx:
                video_processed.append(frame.unsqueeze(0))
            elif frame_idx is None:
                video_processed.append(frame.unsqueeze(0))
        
        if frame_idx is None:
            frame_idx = np.arange(0, len(video_processed), dtype=int).tolist()
        
        video_processed = torch.cat(video_processed, dim=0).bfloat16().to("cuda")
        video_processed = (video_processed, video_processed)

        video_data = (video_processed, (384, 384), "video")
    elif modality == "image":
        image_processor.do_resize = False
        image_processor.do_center_crop = False
        image_tensor, image_highres_tensor = [], []
        for visual in image:
            image_tensor_, image_highres_tensor_ = process_anyres_highres_image_genli(visual, image_processor)
            image_tensor.append(image_tensor_)
            image_highres_tensor.append(image_highres_tensor_)
        if all(x.shape == image_tensor[0].shape for x in image_tensor):
            image_tensor = torch.stack(image_tensor, dim=0)
        if all(x.shape == image_highres_tensor[0].shape for x in image_highres_tensor):
            image_highres_tensor = torch.stack(image_highres_tensor, dim=0)
        if type(image_tensor) is list:
            image_tensor = [_image.bfloat16().to("cuda") for _image in image_tensor]
        else:
            image_tensor = image_tensor.bfloat16().to("cuda")
        if type(image_highres_tensor) is list:
            image_highres_tensor = [_image.bfloat16().to("cuda") for _image in image_highres_tensor]
        else:
            image_highres_tensor = image_highres_tensor.bfloat16().to("cuda")

    pad_token_ids = 151643

    attention_masks = input_ids.ne(pad_token_ids).long().to(device)
    stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
    keywords = [stop_str]
    stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)

    gen_kwargs = {}

    if "max_new_tokens" not in gen_kwargs:
        gen_kwargs["max_new_tokens"] = 1024
    if "temperature" not in gen_kwargs:
        gen_kwargs["temperature"] = 0.2
    if "top_p" not in gen_kwargs:
        gen_kwargs["top_p"] = None
    if "num_beams" not in gen_kwargs:
        gen_kwargs["num_beams"] = 1

    with torch.inference_mode():
        if modality == "video":
            output_ids = model.generate(
                inputs=input_ids,
                images=video_data[0][0],
                images_highres=video_data[0][1],
                modalities=video_data[2],
                speech=speechs,
                speech_lengths=speech_lengths,
                speech_chunks=speech_chunks,
                speech_wav=speech_wavs,
                attention_mask=attention_masks,
                use_cache=True,
                stopping_criteria=[stopping_criteria],
                do_sample=True if gen_kwargs["temperature"] > 0 else False,
                temperature=gen_kwargs["temperature"],
                top_p=gen_kwargs["top_p"],
                num_beams=gen_kwargs["num_beams"],
                max_new_tokens=gen_kwargs["max_new_tokens"],
            )
        elif modality == "image":
            output_ids = model.generate(
                inputs=input_ids,
                images=image_tensor,
                images_highres=image_highres_tensor,
                image_sizes=image_sizes,
                modalities=['image'],
                speech=speechs,
                speech_lengths=speech_lengths,
                speech_chunks=speech_chunks,
                speech_wav=speech_wavs,
                attention_mask=attention_masks,
                use_cache=True,
                stopping_criteria=[stopping_criteria],
                do_sample=True if gen_kwargs["temperature"] > 0 else False,
                temperature=gen_kwargs["temperature"],
                top_p=gen_kwargs["top_p"],
                num_beams=gen_kwargs["num_beams"],
                max_new_tokens=gen_kwargs["max_new_tokens"],
            )
        elif modality == "text":
            output_ids = model.generate(
                input_ids,
                images=images,
                images_highres=images_highres,
                image_sizes=image_sizes,
                modalities=['text'],
                speech=speechs,
                speech_lengths=speech_lengths,
                speech_chunks=speech_chunks,
                speech_wav=speech_wavs,
                attention_mask=attention_masks,
                use_cache=True,
                stopping_criteria=[stopping_criteria],
                do_sample=True if gen_kwargs["temperature"] > 0 else False,
                temperature=gen_kwargs["temperature"],
                top_p=gen_kwargs["top_p"],
                num_beams=gen_kwargs["num_beams"],
                max_new_tokens=gen_kwargs["max_new_tokens"],
                )

    
    outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0]
    outputs = outputs.strip()
    if outputs.endswith(stop_str):
        outputs = outputs[:-len(stop_str)]
    outputs = outputs.strip()

    if OUTPUT_SPEECH:
        voice_all = []
        for i, j in enumerate(tts_model.inference_sft(outputs, '英文女', stream=False)):
            voice_all.append(j['tts_speech'])
        voice_all = torch.cat(voice_all, dim=1)
        torchaudio.save('sft.wav', voice_all, 22050)
        return outputs, "sft.wav"
    # else:
    return outputs, None

# Define input and output for the Gradio interface
demo = gr.Interface(
    fn=ola_inference,
    inputs=[gr.MultimodalTextbox(file_types=[".mp4", "image"],placeholder="Enter message or upload files...(Image or Video is required)"), gr.Audio(type="filepath")],
    outputs=["text", "audio"],
    title="Ola Demo",
    description=title_markdown,
    article=bibtext,
)
# Launch the Gradio app
demo.launch()