import gradio as gr import tensorflow as tf import numpy as np model = tf.keras.models.load_model("landColorGenV1.keras") def generate_image(input_img): input_img = tf.convert_to_tensor(input_img) input_img = tf.cast(input_img,tf.float32) init_shape = input_img.shape input_img = tf.image.resize(input_img, [256, 256], method=tf.image.ResizeMethod.NEAREST_NEIGHBOR) input_img = (input_img / 127.5) -1 input_img = tf.reshape(input_img,(1,256,256,3)) output = model(input_img,training=True) # out_img = output[0].numpy()* 0.5 + 0.5 out_img = tf.image.resize(output[0], [init_shape[0],init_shape[1]], method=tf.image.ResizeMethod.NEAREST_NEIGHBOR) out_img = out_img.numpy()*0.5 + 0.5 return out_img app = gr.Interface(fn = generate_image, inputs="image", outputs="image") app.launch()