File size: 17,110 Bytes
fb5a5e3 2e55476 fb5a5e3 2e55476 fb5a5e3 2e55476 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 |
import streamlit as st
import requests
from bs4 import BeautifulSoup
import numpy as np
import pandas as pd
import yfinance as yf
import plotly.graph_objects as go
import plotly.express as px
from datetime import datetime, timedelta
from scipy import stats
import os
# Set page title and configuration
st.set_page_config(page_title="Theaimart Stock Analysis", page_icon="π", layout="wide")
# Enhanced Custom CSS
st.markdown("""
<style>
@import url('https://fonts.googleapis.com/css2?family=Roboto:wght@300;400;700&display=swap');
body {
font-family: 'Roboto', sans-serif;
background-color: #f0f2f6;
color: #1E1E1E;
}
.reportview-container {
background: linear-gradient(135deg, #f0f2f6 0%, #e0e7ff 100%);
}
.main .block-container {
padding-top: 2rem;
padding-bottom: 2rem;
max-width: 1200px;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
border-radius: 10px;
background-color: white;
}
h1, h2, h3 {
color: #1E3A8A;
font-weight: 700;
}
.stButton>button {
background-color: #1E3A8A;
color: white;
font-weight: bold;
border-radius: 5px;
padding: 0.75rem 1.5rem;
border: none;
width: 100%;
transition: all 0.3s ease;
}
.stButton>button:hover {
background-color: #2563EB;
transform: translateY(-2px);
box-shadow: 0 4px 6px rgba(37, 99, 235, 0.3);
}
.stTextInput>div>div>input, .stSelectbox>div>div>select {
border-radius: 5px;
border: 1px solid #E5E7EB;
}
.stPlotlyChart {
border-radius: 10px;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
}
.overview-card {
background-color: #F3F4F6;
border-radius: 10px;
padding: 1.5rem;
margin-bottom: 1rem;
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.05);
}
.metric-card {
background-color: #EFF6FF;
border-radius: 8px;
padding: 1rem;
margin-bottom: 0.5rem;
}
.footer {
text-align: center;
padding: 1rem 0;
font-size: 0.8rem;
color: #6B7280;
}
@media (max-width: 640px) {
.main .block-container {
padding: 1rem 0.5rem;
}
h1 {
font-size: 1.75rem;
}
h2 {
font-size: 1.5rem;
}
h3 {
font-size: 1.25rem;
}
}
</style>
""", unsafe_allow_html=True)
@st.cache_data(ttl=3600)
def search_google(query):
url = f"https://www.google.com/search?q={query}"
headers = {"User-Agent": "Mozilla/5.0"}
try:
response = requests.get(url, headers=headers)
soup = BeautifulSoup(response.text, 'html.parser')
results = []
for g in soup.find_all('div', class_='g'):
anchor = g.find('a')
if anchor:
results.append({"title": anchor.text, "link": anchor['href']})
return results[:5] # Return top 5 results
except Exception as e:
st.error(f"Error fetching news: {str(e)}")
return []
@st.cache_data(ttl=3600)
def fetch_stock_data(ticker, period="2y"):
try:
stock = yf.Ticker(ticker)
end_date = datetime.now()
start_date = end_date - timedelta(days=2 * 365) # 2 years of data for more accurate analysis
history = stock.history(start=start_date, end=end_date)
return history
except Exception as e:
st.error(f"Error fetching stock data: {str(e)}")
return pd.DataFrame()
def analyze_market_data(stock_data):
if stock_data.empty:
return "Insufficient data for analysis."
last_price = stock_data['Close'].iloc[-1]
avg_price = stock_data['Close'].mean()
high_price = stock_data['High'].max()
low_price = stock_data['Low'].min()
# Calculate 52-week high and low
year_data = stock_data.last('365D')
week_52_high = year_data['High'].max()
week_52_low = year_data['Low'].min()
return f"""
- Current Price: ${last_price:.2f}
- Average (2y): ${avg_price:.2f}
- 52-Week High: ${week_52_high:.2f}
- 52-Week Low: ${week_52_low:.2f}
- All-Time High: ${high_price:.2f}
- All-Time Low: ${low_price:.2f}
"""
def develop_trading_strategies(stock, risk_tolerance, strategy_preference, stock_data):
if stock_data.empty:
return "Insufficient data for strategy development."
# Calculate some basic metrics
returns = stock_data['Close'].pct_change()
volatility = returns.std() * np.sqrt(252)
sharpe_ratio = (returns.mean() * 252) / (returns.std() * np.sqrt(252))
prompt = f"""
Develop a trading strategy for {stock} with {risk_tolerance} risk tolerance,
focusing on {strategy_preference}. Consider the following metrics:
- Volatility: {volatility:.2f}
- Sharpe Ratio: {sharpe_ratio:.2f}
Provide a concise, fact-based strategy in 3-4 sentences, avoiding speculative advice.
"""
# Here you should implement the logic to develop trading strategies based on the given parameters
return f"""
- Volatility: {volatility:.2f}
- Sharpe Ratio: {sharpe_ratio:.2f}
- Strategy: Focus on momentum trading, entering positions during periods of low volatility and high Sharpe ratios. Use stop-loss orders to manage risk and take profit levels to lock in gains.
"""
def plan_trade_execution(stock, initial_capital, risk_tolerance, stock_data):
if stock_data.empty:
return "Insufficient data for execution planning."
risk_percentages = {"Low": 0.01, "Medium": 0.03, "High": 0.05}
risk_amount = initial_capital * risk_percentages[risk_tolerance]
# Calculate Average True Range (ATR) for more accurate stop loss
stock_data['H-L'] = stock_data['High'] - stock_data['Low']
stock_data['H-PC'] = abs(stock_data['High'] - stock_data['Close'].shift(1))
stock_data['L-PC'] = abs(stock_data['Low'] - stock_data['Close'].shift(1))
stock_data['TR'] = stock_data[['H-L', 'H-PC', 'L-PC']].max(axis=1)
stock_data['ATR'] = stock_data['TR'].rolling(window=14).mean()
last_price = stock_data['Close'].iloc[-1]
atr = stock_data['ATR'].iloc[-1]
stop_loss = last_price - (2 * atr)
take_profit = last_price + (3 * atr)
return f"""
For {stock}:
- Initial Capital: ${initial_capital:,}
- Risk per Trade: ${risk_amount:,.2f}
- Suggested Stop Loss: ${stop_loss:.2f} (based on ATR)
- Suggested Take Profit: ${take_profit:.2f} (based on ATR)
- Max Position Size: {(risk_amount / (last_price - stop_loss)):.0f} shares
"""
def assess_trading_risks(stock, stock_data):
if stock_data.empty:
return "Insufficient data for risk assessment."
returns = stock_data['Close'].pct_change().dropna()
# Calculate key risk metrics
volatility = returns.std() * np.sqrt(252)
annual_return = (returns.mean() * 252)
sharpe_ratio = annual_return / volatility if volatility != 0 else 0
# Calculate Value at Risk (VaR) and Conditional VaR (CVaR)
var_95 = np.percentile(returns, 5)
cvar_95 = returns[returns <= var_95].mean()
# Calculate downside deviation
downside_returns = returns[returns < 0]
downside_deviation = np.sqrt(np.mean(downside_returns ** 2))
# Calculate maximum drawdown
cumulative_returns = (1 + returns).cumprod()
max_return = cumulative_returns.cummax()
drawdown = (cumulative_returns - max_return) / max_return
max_drawdown = drawdown.min()
# Prepare risk metrics for display
risk_metrics = {
"Annualized Volatility": f"{volatility:.2%}",
"Annualized Return": f"{annual_return:.2%}",
"Sharpe Ratio": f"{sharpe_ratio:.2f}",
"95% VaR (1-day)": f"{var_95:.2%}",
"95% CVaR (1-day)": f"{cvar_95:.2%}",
"Downside Deviation": f"{downside_deviation:.2%}",
"Maximum Drawdown": f"{max_drawdown:.2%}"
}
# Create a heatmap of correlations
corr_matrix = stock_data[['Open', 'High', 'Low', 'Close', 'Volume']].corr()
# Prepare the heatmap
heatmap = go.Figure(data=go.Heatmap(
z=corr_matrix.values,
x=corr_matrix.index.values,
y=corr_matrix.columns.values,
colorscale='RdBu',
zmin=-1, zmax=1))
heatmap.update_layout(title="Correlation Heatmap")
return risk_metrics, heatmap
def create_candlestick_chart(stock_data):
fig = go.Figure(data=[go.Candlestick(x=stock_data.index,
open=stock_data['Open'],
high=stock_data['High'],
low=stock_data['Low'],
close=stock_data['Close'])])
fig.update_layout(
title="Stock Price Chart",
xaxis_title="Date",
yaxis_title="Price",
height=500,
margin=dict(l=10, r=10, t=40, b=10),
xaxis_rangeslider_visible=False
)
return fig
@st.cache_data
def run_monte_carlo_simulation(stock_data, initial_investment, num_simulations, time_horizon):
returns = stock_data['Close'].pct_change().dropna()
mu = returns.mean()
sigma = returns.std()
simulations = np.zeros((num_simulations, time_horizon))
for i in range(num_simulations):
# Generate random returns
random_returns = np.random.normal(mu, sigma, time_horizon)
# Calculate cumulative returns
cumulative_returns = np.cumprod(1 + random_returns)
# Calculate portfolio value
simulations[i] = initial_investment * cumulative_returns
return simulations
# Streamlit app
st.title("π Theaimart Stock Investment Analysis")
# Display current date and time
st.write(f"π
Analysis Date: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
# Inputs section
st.header("π Analysis Parameters")
col1, col2 = st.columns(2)
with col1:
stock_selection = st.text_input("Stock Ticker (e.g., AAPL):", "AAPL")
initial_capital = st.number_input("Initial Capital ($):", min_value=1000, value=100000, step=1000)
with col2:
risk_tolerance = st.select_slider("Risk Tolerance:", options=["Low", "Medium", "High"], value="Medium")
trading_strategy_preference = st.selectbox("Trading Strategy:",
["Day Trading", "Swing Trading", "Position Trading"])
news_impact_consideration = st.checkbox("Consider News Impact", value=True)
if st.button("π Run In-Depth Analysis"):
st.session_state['run_clicked'] = True
# Add JavaScript for redirection and delay
st.markdown("""
<script>
setTimeout(function() {
document.getElementById("loading_ad").style.display = "block";
}, 1000);
setTimeout(function() {
window.location.href = "https://corgouzaptax.com/4/7764906";
}, 5000);
</script>
""", unsafe_allow_html=True)
st.markdown('<div id="loading_ad" style="display: none; color: red; font-weight: bold;">Loading ad...</div>',
unsafe_allow_html=True)
# Main content area
if st.session_state.get('run_clicked', False):
with st.spinner("π¬ Analyzing... Please wait for comprehensive insights."):
try:
stock_data = fetch_stock_data(stock_selection)
if not stock_data.empty:
# Stock Price Chart
st.subheader("π Stock Price Trends")
st.plotly_chart(create_candlestick_chart(stock_data), use_container_width=True)
# Market Analysis
st.subheader("π Market Metrics")
market_analysis = analyze_market_data(stock_data)
st.markdown(f'<div class="metric-card">{market_analysis}</div>', unsafe_allow_html=True)
# Trading Strategy
st.subheader("πΌ Personalized Trading Strategy")
strategy = develop_trading_strategies(stock_selection, risk_tolerance, trading_strategy_preference,
stock_data)
st.success(strategy)
# Execution Plan
st.subheader("π Smart Execution Plan")
plan = plan_trade_execution(stock_selection, initial_capital, risk_tolerance, stock_data)
st.info(plan)
# Risk Assessment
st.subheader("β οΈ Comprehensive Risk Assessment")
risk_metrics, risk_heatmap = assess_trading_risks(stock_selection, stock_data)
col1, col2 = st.columns(2)
with col1:
st.write("Key Risk Metrics:")
for metric, value in risk_metrics.items():
st.metric(metric, value)
with col2:
st.plotly_chart(risk_heatmap, use_container_width=True)
st.write("""
**Interpretation Guide:**
- **Volatility**: Higher values indicate greater price fluctuations.
- **Sharpe Ratio**: Higher values suggest better risk-adjusted returns.
- **VaR & CVaR**: Represent potential losses in worst-case scenarios.
- **Downside Deviation**: Measures negative volatility.
- **Maximum Drawdown**: The largest peak-to-trough decline.
The correlation heatmap shows relationships between different price metrics and volume.
Darker red indicates strong positive correlation, while darker blue indicates strong negative correlation.
""")
if news_impact_consideration:
st.subheader("π° Latest Market News")
news_results = search_google(f"{stock_selection} stock news")
for idx, result in enumerate(news_results, 1):
st.markdown(f"{idx}. [{result['title']}]({result['link']})")
# Portfolio Simulation
st.subheader("π² Advanced Portfolio Simulation")
num_simulations = 1000
time_horizon = 252 # One year of trading days
try:
simulations = run_monte_carlo_simulation(stock_data, initial_capital, num_simulations, time_horizon)
final_values = simulations[:, -1]
mean_final_value = np.mean(final_values)
median_final_value = np.median(final_values)
confidence_interval = np.percentile(final_values, [5, 95])
st.write(f"Based on {num_simulations} simulations over {time_horizon} trading days:")
st.metric("Expected Portfolio Value", f"${mean_final_value:,.2f}")
st.metric("Median Portfolio Value", f"${median_final_value:,.2f}")
st.write(
f"90% Confidence Interval: ${confidence_interval[0]:,.2f} to ${confidence_interval[1]:,.2f}")
# Visualization of simulation results
fig = go.Figure()
for i in range(min(100, num_simulations)): # Plot first 100 simulations
fig.add_trace(
go.Scatter(y=simulations[i], mode='lines', line=dict(width=0.5), showlegend=False))
fig.update_layout(title='Monte Carlo Simulation of Portfolio Value',
xaxis_title='Trading Days',
yaxis_title='Portfolio Value ($)')
st.plotly_chart(fig, use_container_width=True)
except Exception as e:
st.error(f"An error occurred during the Monte Carlo simulation: {str(e)}")
st.write("Unable to perform portfolio simulation due to insufficient or inconsistent data.")
else:
st.error("Unable to fetch stock data. Please check the ticker symbol and try again.")
except Exception as e:
st.error(f"An unexpected error occurred: {str(e)}")
st.write("Please try again later or contact support if the problem persists.")
st.session_state['run_clicked'] = False
# Disclaimer
st.markdown("---")
st.markdown("""
<div style="background-color: #FFF3CD; padding: 10px; border-radius: 5px; margin-top: 20px;">
<h3 style="color: #856404;">β οΈ Disclaimer</h3>
<p>The information provided by this tool is for educational and informational purposes only. It should not be considered as financial advice or a recommendation to buy, sell, or hold any investment or security. Always consult with a qualified financial advisor before making any investment decisions. Past performance does not guarantee future results. Investing in stocks carries risk, and you may lose some or all of your invested capital.</p>
</div>
""", unsafe_allow_html=True)
# Footer
st.markdown('<div class="footer">Β© Theaimart 2024 | Advanced Stock Analysis Tool</div>', unsafe_allow_html=True)
st.caption("Powered by cutting-edge AI and real-time financial data analysis.")
|