Spaces:
Runtime error
Runtime error
#!/usr/bin/env python | |
from __future__ import annotations | |
import argparse | |
import os | |
from contextlib import nullcontext | |
import torch | |
from accelerate import init_empty_weights | |
from diffusers import ( | |
AutoencoderDC, | |
DPMSolverMultistepScheduler, | |
FlowMatchEulerDiscreteScheduler, | |
SanaPipeline, | |
SanaTransformer2DModel, | |
) | |
from diffusers.models.modeling_utils import load_model_dict_into_meta | |
from diffusers.utils.import_utils import is_accelerate_available | |
from huggingface_hub import hf_hub_download, snapshot_download | |
from termcolor import colored | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
CTX = init_empty_weights if is_accelerate_available else nullcontext | |
ckpt_ids = [ | |
"Efficient-Large-Model/Sana_1600M_2Kpx_BF16/checkpoints/Sana_1600M_2Kpx_BF16.pth", | |
"Efficient-Large-Model/Sana_1600M_1024px_MultiLing/checkpoints/Sana_1600M_1024px_MultiLing.pth", | |
"Efficient-Large-Model/Sana_1600M_1024px_BF16/checkpoints/Sana_1600M_1024px_BF16.pth", | |
"Efficient-Large-Model/Sana_1600M_512px_MultiLing/checkpoints/Sana_1600M_512px_MultiLing.pth", | |
"Efficient-Large-Model/Sana_1600M_1024px/checkpoints/Sana_1600M_1024px.pth", | |
"Efficient-Large-Model/Sana_1600M_512px/checkpoints/Sana_1600M_512px.pth", | |
"Efficient-Large-Model/Sana_600M_1024px/checkpoints/Sana_600M_1024px_MultiLing.pth", | |
"Efficient-Large-Model/Sana_600M_512px/checkpoints/Sana_600M_512px_MultiLing.pth", | |
] | |
# https://github.com/NVlabs/Sana/blob/main/scripts/inference.py | |
def main(args): | |
cache_dir_path = os.path.expanduser("~/.cache/huggingface/hub") | |
if args.orig_ckpt_path is None or args.orig_ckpt_path in ckpt_ids: | |
ckpt_id = args.orig_ckpt_path or ckpt_ids[0] | |
snapshot_download( | |
repo_id=f"{'/'.join(ckpt_id.split('/')[:2])}", | |
cache_dir=cache_dir_path, | |
repo_type="model", | |
) | |
file_path = hf_hub_download( | |
repo_id=f"{'/'.join(ckpt_id.split('/')[:2])}", | |
filename=f"{'/'.join(ckpt_id.split('/')[2:])}", | |
cache_dir=cache_dir_path, | |
repo_type="model", | |
) | |
else: | |
file_path = args.orig_ckpt_path | |
print(colored(f"Loading checkpoint from {file_path}", "green", attrs=["bold"])) | |
all_state_dict = torch.load(file_path, weights_only=True) | |
state_dict = all_state_dict.pop("state_dict") | |
converted_state_dict = {} | |
# Patch embeddings. | |
converted_state_dict["patch_embed.proj.weight"] = state_dict.pop("x_embedder.proj.weight") | |
converted_state_dict["patch_embed.proj.bias"] = state_dict.pop("x_embedder.proj.bias") | |
# Caption projection. | |
converted_state_dict["caption_projection.linear_1.weight"] = state_dict.pop("y_embedder.y_proj.fc1.weight") | |
converted_state_dict["caption_projection.linear_1.bias"] = state_dict.pop("y_embedder.y_proj.fc1.bias") | |
converted_state_dict["caption_projection.linear_2.weight"] = state_dict.pop("y_embedder.y_proj.fc2.weight") | |
converted_state_dict["caption_projection.linear_2.bias"] = state_dict.pop("y_embedder.y_proj.fc2.bias") | |
# AdaLN-single LN | |
converted_state_dict["time_embed.emb.timestep_embedder.linear_1.weight"] = state_dict.pop("t_embedder.mlp.0.weight") | |
converted_state_dict["time_embed.emb.timestep_embedder.linear_1.bias"] = state_dict.pop("t_embedder.mlp.0.bias") | |
converted_state_dict["time_embed.emb.timestep_embedder.linear_2.weight"] = state_dict.pop("t_embedder.mlp.2.weight") | |
converted_state_dict["time_embed.emb.timestep_embedder.linear_2.bias"] = state_dict.pop("t_embedder.mlp.2.bias") | |
# Shared norm. | |
converted_state_dict["time_embed.linear.weight"] = state_dict.pop("t_block.1.weight") | |
converted_state_dict["time_embed.linear.bias"] = state_dict.pop("t_block.1.bias") | |
# y norm | |
converted_state_dict["caption_norm.weight"] = state_dict.pop("attention_y_norm.weight") | |
# scheduler | |
if args.image_size == 4096: | |
flow_shift = 6.0 | |
else: | |
flow_shift = 3.0 | |
# model config | |
if args.model_type == "SanaMS_1600M_P1_D20": | |
layer_num = 20 | |
elif args.model_type == "SanaMS_600M_P1_D28": | |
layer_num = 28 | |
else: | |
raise ValueError(f"{args.model_type} is not supported.") | |
# Positional embedding interpolation scale. | |
interpolation_scale = {512: None, 1024: None, 2048: 1.0, 4096: 2.0} | |
for depth in range(layer_num): | |
# Transformer blocks. | |
converted_state_dict[f"transformer_blocks.{depth}.scale_shift_table"] = state_dict.pop( | |
f"blocks.{depth}.scale_shift_table" | |
) | |
# Linear Attention is all you need 🤘 | |
# Self attention. | |
q, k, v = torch.chunk(state_dict.pop(f"blocks.{depth}.attn.qkv.weight"), 3, dim=0) | |
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_q.weight"] = q | |
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_k.weight"] = k | |
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_v.weight"] = v | |
# Projection. | |
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_out.0.weight"] = state_dict.pop( | |
f"blocks.{depth}.attn.proj.weight" | |
) | |
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_out.0.bias"] = state_dict.pop( | |
f"blocks.{depth}.attn.proj.bias" | |
) | |
# Feed-forward. | |
converted_state_dict[f"transformer_blocks.{depth}.ff.conv_inverted.weight"] = state_dict.pop( | |
f"blocks.{depth}.mlp.inverted_conv.conv.weight" | |
) | |
converted_state_dict[f"transformer_blocks.{depth}.ff.conv_inverted.bias"] = state_dict.pop( | |
f"blocks.{depth}.mlp.inverted_conv.conv.bias" | |
) | |
converted_state_dict[f"transformer_blocks.{depth}.ff.conv_depth.weight"] = state_dict.pop( | |
f"blocks.{depth}.mlp.depth_conv.conv.weight" | |
) | |
converted_state_dict[f"transformer_blocks.{depth}.ff.conv_depth.bias"] = state_dict.pop( | |
f"blocks.{depth}.mlp.depth_conv.conv.bias" | |
) | |
converted_state_dict[f"transformer_blocks.{depth}.ff.conv_point.weight"] = state_dict.pop( | |
f"blocks.{depth}.mlp.point_conv.conv.weight" | |
) | |
# Cross-attention. | |
q = state_dict.pop(f"blocks.{depth}.cross_attn.q_linear.weight") | |
q_bias = state_dict.pop(f"blocks.{depth}.cross_attn.q_linear.bias") | |
k, v = torch.chunk(state_dict.pop(f"blocks.{depth}.cross_attn.kv_linear.weight"), 2, dim=0) | |
k_bias, v_bias = torch.chunk(state_dict.pop(f"blocks.{depth}.cross_attn.kv_linear.bias"), 2, dim=0) | |
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_q.weight"] = q | |
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_q.bias"] = q_bias | |
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_k.weight"] = k | |
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_k.bias"] = k_bias | |
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_v.weight"] = v | |
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_v.bias"] = v_bias | |
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_out.0.weight"] = state_dict.pop( | |
f"blocks.{depth}.cross_attn.proj.weight" | |
) | |
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_out.0.bias"] = state_dict.pop( | |
f"blocks.{depth}.cross_attn.proj.bias" | |
) | |
# Final block. | |
converted_state_dict["proj_out.weight"] = state_dict.pop("final_layer.linear.weight") | |
converted_state_dict["proj_out.bias"] = state_dict.pop("final_layer.linear.bias") | |
converted_state_dict["scale_shift_table"] = state_dict.pop("final_layer.scale_shift_table") | |
# Transformer | |
with CTX(): | |
transformer = SanaTransformer2DModel( | |
in_channels=32, | |
out_channels=32, | |
num_attention_heads=model_kwargs[args.model_type]["num_attention_heads"], | |
attention_head_dim=model_kwargs[args.model_type]["attention_head_dim"], | |
num_layers=model_kwargs[args.model_type]["num_layers"], | |
num_cross_attention_heads=model_kwargs[args.model_type]["num_cross_attention_heads"], | |
cross_attention_head_dim=model_kwargs[args.model_type]["cross_attention_head_dim"], | |
cross_attention_dim=model_kwargs[args.model_type]["cross_attention_dim"], | |
caption_channels=2304, | |
mlp_ratio=2.5, | |
attention_bias=False, | |
sample_size=args.image_size // 32, | |
patch_size=1, | |
norm_elementwise_affine=False, | |
norm_eps=1e-6, | |
interpolation_scale=interpolation_scale[args.image_size], | |
) | |
if is_accelerate_available(): | |
load_model_dict_into_meta(transformer, converted_state_dict) | |
else: | |
transformer.load_state_dict(converted_state_dict, strict=True, assign=True) | |
try: | |
state_dict.pop("y_embedder.y_embedding") | |
state_dict.pop("pos_embed") | |
except KeyError: | |
print("y_embedder.y_embedding or pos_embed not found in the state_dict") | |
assert len(state_dict) == 0, f"State dict is not empty, {state_dict.keys()}" | |
num_model_params = sum(p.numel() for p in transformer.parameters()) | |
print(f"Total number of transformer parameters: {num_model_params}") | |
transformer = transformer.to(weight_dtype) | |
if not args.save_full_pipeline: | |
print( | |
colored( | |
f"Only saving transformer model of {args.model_type}. " | |
f"Set --save_full_pipeline to save the whole SanaPipeline", | |
"green", | |
attrs=["bold"], | |
) | |
) | |
transformer.save_pretrained( | |
os.path.join(args.dump_path, "transformer"), safe_serialization=True, max_shard_size="5GB", variant=variant | |
) | |
else: | |
print(colored(f"Saving the whole SanaPipeline containing {args.model_type}", "green", attrs=["bold"])) | |
# VAE | |
ae = AutoencoderDC.from_pretrained("mit-han-lab/dc-ae-f32c32-sana-1.0-diffusers", torch_dtype=torch.float32) | |
# Text Encoder | |
text_encoder_model_path = "google/gemma-2-2b-it" | |
tokenizer = AutoTokenizer.from_pretrained(text_encoder_model_path) | |
tokenizer.padding_side = "right" | |
text_encoder = AutoModelForCausalLM.from_pretrained( | |
text_encoder_model_path, torch_dtype=torch.bfloat16 | |
).get_decoder() | |
# Scheduler | |
if args.scheduler_type == "flow-dpm_solver": | |
scheduler = DPMSolverMultistepScheduler( | |
flow_shift=flow_shift, | |
use_flow_sigmas=True, | |
prediction_type="flow_prediction", | |
) | |
elif args.scheduler_type == "flow-euler": | |
scheduler = FlowMatchEulerDiscreteScheduler(shift=flow_shift) | |
else: | |
raise ValueError(f"Scheduler type {args.scheduler_type} is not supported") | |
pipe = SanaPipeline( | |
tokenizer=tokenizer, | |
text_encoder=text_encoder, | |
transformer=transformer, | |
vae=ae, | |
scheduler=scheduler, | |
) | |
pipe.save_pretrained(args.dump_path, safe_serialization=True, max_shard_size="5GB", variant=variant) | |
DTYPE_MAPPING = { | |
"fp32": torch.float32, | |
"fp16": torch.float16, | |
"bf16": torch.bfloat16, | |
} | |
VARIANT_MAPPING = { | |
"fp32": None, | |
"fp16": "fp16", | |
"bf16": "bf16", | |
} | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"--orig_ckpt_path", default=None, type=str, required=False, help="Path to the checkpoint to convert." | |
) | |
parser.add_argument( | |
"--image_size", | |
default=1024, | |
type=int, | |
choices=[512, 1024, 2048, 4096], | |
required=False, | |
help="Image size of pretrained model, 512, 1024, 2048 or 4096.", | |
) | |
parser.add_argument( | |
"--model_type", default="SanaMS_1600M_P1_D20", type=str, choices=["SanaMS_1600M_P1_D20", "SanaMS_600M_P1_D28"] | |
) | |
parser.add_argument( | |
"--scheduler_type", default="flow-dpm_solver", type=str, choices=["flow-dpm_solver", "flow-euler"] | |
) | |
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output pipeline.") | |
parser.add_argument("--save_full_pipeline", action="store_true", help="save all the pipelien elemets in one.") | |
parser.add_argument("--dtype", default="fp32", type=str, choices=["fp32", "fp16", "bf16"], help="Weight dtype.") | |
args = parser.parse_args() | |
model_kwargs = { | |
"SanaMS_1600M_P1_D20": { | |
"num_attention_heads": 70, | |
"attention_head_dim": 32, | |
"num_cross_attention_heads": 20, | |
"cross_attention_head_dim": 112, | |
"cross_attention_dim": 2240, | |
"num_layers": 20, | |
}, | |
"SanaMS_600M_P1_D28": { | |
"num_attention_heads": 36, | |
"attention_head_dim": 32, | |
"num_cross_attention_heads": 16, | |
"cross_attention_head_dim": 72, | |
"cross_attention_dim": 1152, | |
"num_layers": 28, | |
}, | |
} | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
weight_dtype = DTYPE_MAPPING[args.dtype] | |
variant = VARIANT_MAPPING[args.dtype] | |
main(args) | |