# MIT License # # Copyright (c) 2018 Tom Runia # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to conditions. # # Author: Tom Runia # Date Created: 2018-08-03 from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from PIL import Image def make_colorwheel(): ''' Generates a color wheel for optical flow visualization as presented in: Baker et al. "A Database and Evaluation Methodology for Optical Flow" (ICCV, 2007) URL: http://vision.middlebury.edu/flow/flowEval-iccv07.pdf According to the C++ source code of Daniel Scharstein According to the Matlab source code of Deqing Sun ''' RY = 15 YG = 6 GC = 4 CB = 11 BM = 13 MR = 6 ncols = RY + YG + GC + CB + BM + MR colorwheel = np.zeros((ncols, 3)) col = 0 # RY colorwheel[0:RY, 0] = 255 colorwheel[0:RY, 1] = np.floor(255 * np.arange(0, RY) / RY) col = col + RY # YG colorwheel[col:col + YG, 0] = 255 - np.floor(255 * np.arange(0, YG) / YG) colorwheel[col:col + YG, 1] = 255 col = col + YG # GC colorwheel[col:col + GC, 1] = 255 colorwheel[col:col + GC, 2] = np.floor(255 * np.arange(0, GC) / GC) col = col + GC # CB colorwheel[col:col + CB, 1] = 255 - np.floor(255 * np.arange(CB) / CB) colorwheel[col:col + CB, 2] = 255 col = col + CB # BM colorwheel[col:col + BM, 2] = 255 colorwheel[col:col + BM, 0] = np.floor(255 * np.arange(0, BM) / BM) col = col + BM # MR colorwheel[col:col + MR, 2] = 255 - np.floor(255 * np.arange(MR) / MR) colorwheel[col:col + MR, 0] = 255 return colorwheel def flow_compute_color(u, v, convert_to_bgr=False): ''' Applies the flow color wheel to (possibly clipped) flow components u and v. According to the C++ source code of Daniel Scharstein According to the Matlab source code of Deqing Sun :param u: np.ndarray, input horizontal flow :param v: np.ndarray, input vertical flow :param convert_to_bgr: bool, whether to change ordering and output BGR instead of RGB :return: ''' flow_image = np.zeros((u.shape[0], u.shape[1], 3), np.uint8) colorwheel = make_colorwheel() # shape [55x3] ncols = colorwheel.shape[0] rad = np.sqrt(np.square(u) + np.square(v)) a = np.arctan2(-v, -u) / np.pi fk = (a + 1) / 2 * (ncols - 1) + 1 k0 = np.floor(fk).astype(np.int32) k1 = k0 + 1 k1[k1 == ncols] = 1 f = fk - k0 for i in range(colorwheel.shape[1]): tmp = colorwheel[:, i] col0 = tmp[k0] / 255.0 col1 = tmp[k1] / 255.0 col = (1 - f) * col0 + f * col1 idx = (rad <= 1) col[idx] = 1 - rad[idx] * (1 - col[idx]) col[~idx] = col[~idx] * 0.75 # out of range? # Note the 2-i => BGR instead of RGB ch_idx = 2 - i if convert_to_bgr else i flow_image[:, :, ch_idx] = np.floor(255 * col) return flow_image def flow_to_color(flow_uv, clip_flow=None, convert_to_bgr=False): ''' Expects a two dimensional flow image of shape [H,W,2] According to the C++ source code of Daniel Scharstein According to the Matlab source code of Deqing Sun :param flow_uv: np.ndarray of shape [H,W,2] :param clip_flow: float, maximum clipping value for flow :return: ''' assert flow_uv.ndim == 3, 'input flow must have three dimensions' assert flow_uv.shape[2] == 2, 'input flow must have shape [H,W,2]' if clip_flow is not None: flow_uv = np.clip(flow_uv, 0, clip_flow) u = flow_uv[:, :, 0] v = flow_uv[:, :, 1] rad = np.sqrt(np.square(u) + np.square(v)) rad_max = np.max(rad) epsilon = 1e-5 u = u / (rad_max + epsilon) v = v / (rad_max + epsilon) return flow_compute_color(u, v, convert_to_bgr) UNKNOWN_FLOW_THRESH = 1e7 SMALLFLOW = 0.0 LARGEFLOW = 1e8 def make_color_wheel(): """ Generate color wheel according Middlebury color code :return: Color wheel """ RY = 15 YG = 6 GC = 4 CB = 11 BM = 13 MR = 6 ncols = RY + YG + GC + CB + BM + MR colorwheel = np.zeros([ncols, 3]) col = 0 # RY colorwheel[0:RY, 0] = 255 colorwheel[0:RY, 1] = np.transpose(np.floor(255 * np.arange(0, RY) / RY)) col += RY # YG colorwheel[col:col + YG, 0] = 255 - np.transpose(np.floor(255 * np.arange(0, YG) / YG)) colorwheel[col:col + YG, 1] = 255 col += YG # GC colorwheel[col:col + GC, 1] = 255 colorwheel[col:col + GC, 2] = np.transpose(np.floor(255 * np.arange(0, GC) / GC)) col += GC # CB colorwheel[col:col + CB, 1] = 255 - np.transpose(np.floor(255 * np.arange(0, CB) / CB)) colorwheel[col:col + CB, 2] = 255 col += CB # BM colorwheel[col:col + BM, 2] = 255 colorwheel[col:col + BM, 0] = np.transpose(np.floor(255 * np.arange(0, BM) / BM)) col += + BM # MR colorwheel[col:col + MR, 2] = 255 - np.transpose(np.floor(255 * np.arange(0, MR) / MR)) colorwheel[col:col + MR, 0] = 255 return colorwheel def compute_color(u, v): """ compute optical flow color map :param u: optical flow horizontal map :param v: optical flow vertical map :return: optical flow in color code """ [h, w] = u.shape img = np.zeros([h, w, 3]) nanIdx = np.isnan(u) | np.isnan(v) u[nanIdx] = 0 v[nanIdx] = 0 colorwheel = make_color_wheel() ncols = np.size(colorwheel, 0) rad = np.sqrt(u ** 2 + v ** 2) a = np.arctan2(-v, -u) / np.pi fk = (a + 1) / 2 * (ncols - 1) + 1 k0 = np.floor(fk).astype(int) k1 = k0 + 1 k1[k1 == ncols + 1] = 1 f = fk - k0 for i in range(0, np.size(colorwheel, 1)): tmp = colorwheel[:, i] col0 = tmp[k0 - 1] / 255 col1 = tmp[k1 - 1] / 255 col = (1 - f) * col0 + f * col1 idx = rad <= 1 col[idx] = 1 - rad[idx] * (1 - col[idx]) notidx = np.logical_not(idx) col[notidx] *= 0.75 img[:, :, i] = np.uint8(np.floor(255 * col * (1 - nanIdx))) return img # from https://github.com/gengshan-y/VCN def flow_to_image(flow): """ Convert flow into middlebury color code image :param flow: optical flow map :return: optical flow image in middlebury color """ u = flow[:, :, 0] v = flow[:, :, 1] maxu = -999. maxv = -999. minu = 999. minv = 999. idxUnknow = (abs(u) > UNKNOWN_FLOW_THRESH) | (abs(v) > UNKNOWN_FLOW_THRESH) u[idxUnknow] = 0 v[idxUnknow] = 0 maxu = max(maxu, np.max(u)) minu = min(minu, np.min(u)) maxv = max(maxv, np.max(v)) minv = min(minv, np.min(v)) rad = np.sqrt(u ** 2 + v ** 2) maxrad = max(-1, np.max(rad)) u = u / (maxrad + np.finfo(float).eps) v = v / (maxrad + np.finfo(float).eps) img = compute_color(u, v) idx = np.repeat(idxUnknow[:, :, np.newaxis], 3, axis=2) img[idx] = 0 return np.uint8(img)