import torch import torch.nn.functional as F from .geometry import coords_grid, generate_window_grid, normalize_coords def global_correlation_softmax(feature0, feature1, pred_bidir_flow=False, ): # global correlation b, c, h, w = feature0.shape feature0 = feature0.view(b, c, -1).permute(0, 2, 1) # [B, H*W, C] feature1 = feature1.view(b, c, -1) # [B, C, H*W] correlation = torch.matmul(feature0, feature1).view(b, h, w, h, w) / (c ** 0.5) # [B, H, W, H, W] # flow from softmax init_grid = coords_grid(b, h, w).to(correlation.device) # [B, 2, H, W] grid = init_grid.view(b, 2, -1).permute(0, 2, 1) # [B, H*W, 2] correlation = correlation.view(b, h * w, h * w) # [B, H*W, H*W] if pred_bidir_flow: correlation = torch.cat((correlation, correlation.permute(0, 2, 1)), dim=0) # [2*B, H*W, H*W] init_grid = init_grid.repeat(2, 1, 1, 1) # [2*B, 2, H, W] grid = grid.repeat(2, 1, 1) # [2*B, H*W, 2] b = b * 2 prob = F.softmax(correlation, dim=-1) # [B, H*W, H*W] correspondence = torch.matmul(prob, grid).view(b, h, w, 2).permute(0, 3, 1, 2) # [B, 2, H, W] # when predicting bidirectional flow, flow is the concatenation of forward flow and backward flow flow = correspondence - init_grid return flow, prob def local_correlation_softmax(feature0, feature1, local_radius, padding_mode='zeros', ): b, c, h, w = feature0.size() coords_init = coords_grid(b, h, w).to(feature0.device) # [B, 2, H, W] coords = coords_init.view(b, 2, -1).permute(0, 2, 1) # [B, H*W, 2] local_h = 2 * local_radius + 1 local_w = 2 * local_radius + 1 window_grid = generate_window_grid(-local_radius, local_radius, -local_radius, local_radius, local_h, local_w, device=feature0.device) # [2R+1, 2R+1, 2] window_grid = window_grid.reshape(-1, 2).repeat(b, 1, 1, 1) # [B, 1, (2R+1)^2, 2] sample_coords = coords.unsqueeze(-2) + window_grid # [B, H*W, (2R+1)^2, 2] sample_coords_softmax = sample_coords # exclude coords that are out of image space valid_x = (sample_coords[:, :, :, 0] >= 0) & (sample_coords[:, :, :, 0] < w) # [B, H*W, (2R+1)^2] valid_y = (sample_coords[:, :, :, 1] >= 0) & (sample_coords[:, :, :, 1] < h) # [B, H*W, (2R+1)^2] valid = valid_x & valid_y # [B, H*W, (2R+1)^2], used to mask out invalid values when softmax # normalize coordinates to [-1, 1] sample_coords_norm = normalize_coords(sample_coords, h, w) # [-1, 1] window_feature = F.grid_sample(feature1, sample_coords_norm, padding_mode=padding_mode, align_corners=True ).permute(0, 2, 1, 3) # [B, H*W, C, (2R+1)^2] feature0_view = feature0.permute(0, 2, 3, 1).view(b, h * w, 1, c) # [B, H*W, 1, C] corr = torch.matmul(feature0_view, window_feature).view(b, h * w, -1) / (c ** 0.5) # [B, H*W, (2R+1)^2] # mask invalid locations corr[~valid] = -1e9 prob = F.softmax(corr, -1) # [B, H*W, (2R+1)^2] correspondence = torch.matmul(prob.unsqueeze(-2), sample_coords_softmax).squeeze(-2).view( b, h, w, 2).permute(0, 3, 1, 2) # [B, 2, H, W] flow = correspondence - coords_init match_prob = prob return flow, match_prob def local_correlation_with_flow(feature0, feature1, flow, local_radius, padding_mode='zeros', dilation=1, ): b, c, h, w = feature0.size() coords_init = coords_grid(b, h, w).to(feature0.device) # [B, 2, H, W] coords = coords_init.view(b, 2, -1).permute(0, 2, 1) # [B, H*W, 2] local_h = 2 * local_radius + 1 local_w = 2 * local_radius + 1 window_grid = generate_window_grid(-local_radius, local_radius, -local_radius, local_radius, local_h, local_w, device=feature0.device) # [2R+1, 2R+1, 2] window_grid = window_grid.reshape(-1, 2).repeat(b, 1, 1, 1) # [B, 1, (2R+1)^2, 2] sample_coords = coords.unsqueeze(-2) + window_grid * dilation # [B, H*W, (2R+1)^2, 2] # flow can be zero when using features after transformer if not isinstance(flow, float): sample_coords = sample_coords + flow.view( b, 2, -1).permute(0, 2, 1).unsqueeze(-2) # [B, H*W, (2R+1)^2, 2] else: assert flow == 0. # normalize coordinates to [-1, 1] sample_coords_norm = normalize_coords(sample_coords, h, w) # [-1, 1] window_feature = F.grid_sample(feature1, sample_coords_norm, padding_mode=padding_mode, align_corners=True ).permute(0, 2, 1, 3) # [B, H*W, C, (2R+1)^2] feature0_view = feature0.permute(0, 2, 3, 1).view(b, h * w, 1, c) # [B, H*W, 1, C] corr = torch.matmul(feature0_view, window_feature).view(b, h * w, -1) / (c ** 0.5) # [B, H*W, (2R+1)^2] corr = corr.view(b, h, w, -1).permute(0, 3, 1, 2).contiguous() # [B, (2R+1)^2, H, W] return corr def global_correlation_softmax_stereo(feature0, feature1, ): # global correlation on horizontal direction b, c, h, w = feature0.shape x_grid = torch.linspace(0, w - 1, w, device=feature0.device) # [W] feature0 = feature0.permute(0, 2, 3, 1) # [B, H, W, C] feature1 = feature1.permute(0, 2, 1, 3) # [B, H, C, W] correlation = torch.matmul(feature0, feature1) / (c ** 0.5) # [B, H, W, W] # mask subsequent positions to make disparity positive mask = torch.triu(torch.ones((w, w)), diagonal=1).type_as(feature0) # [W, W] valid_mask = (mask == 0).unsqueeze(0).unsqueeze(0).repeat(b, h, 1, 1) # [B, H, W, W] correlation[~valid_mask] = -1e9 prob = F.softmax(correlation, dim=-1) # [B, H, W, W] correspondence = (x_grid.view(1, 1, 1, w) * prob).sum(-1) # [B, H, W] # NOTE: unlike flow, disparity is typically positive disparity = x_grid.view(1, 1, w).repeat(b, h, 1) - correspondence # [B, H, W] return disparity.unsqueeze(1), prob # feature resolution def local_correlation_softmax_stereo(feature0, feature1, local_radius, ): b, c, h, w = feature0.size() coords_init = coords_grid(b, h, w).to(feature0.device) # [B, 2, H, W] coords = coords_init.view(b, 2, -1).permute(0, 2, 1).contiguous() # [B, H*W, 2] local_h = 1 local_w = 2 * local_radius + 1 window_grid = generate_window_grid(0, 0, -local_radius, local_radius, local_h, local_w, device=feature0.device) # [1, 2R+1, 2] window_grid = window_grid.reshape(-1, 2).repeat(b, 1, 1, 1) # [B, 1, (2R+1), 2] sample_coords = coords.unsqueeze(-2) + window_grid # [B, H*W, (2R+1), 2] sample_coords_softmax = sample_coords # exclude coords that are out of image space valid_x = (sample_coords[:, :, :, 0] >= 0) & (sample_coords[:, :, :, 0] < w) # [B, H*W, (2R+1)^2] valid_y = (sample_coords[:, :, :, 1] >= 0) & (sample_coords[:, :, :, 1] < h) # [B, H*W, (2R+1)^2] valid = valid_x & valid_y # [B, H*W, (2R+1)^2], used to mask out invalid values when softmax # normalize coordinates to [-1, 1] sample_coords_norm = normalize_coords(sample_coords, h, w) # [-1, 1] window_feature = F.grid_sample(feature1, sample_coords_norm, padding_mode='zeros', align_corners=True ).permute(0, 2, 1, 3) # [B, H*W, C, (2R+1)] feature0_view = feature0.permute(0, 2, 3, 1).contiguous().view(b, h * w, 1, c) # [B, H*W, 1, C] corr = torch.matmul(feature0_view, window_feature).view(b, h * w, -1) / (c ** 0.5) # [B, H*W, (2R+1)] # mask invalid locations corr[~valid] = -1e9 prob = F.softmax(corr, -1) # [B, H*W, (2R+1)] correspondence = torch.matmul(prob.unsqueeze(-2), sample_coords_softmax).squeeze(-2).view( b, h, w, 2).permute(0, 3, 1, 2).contiguous() # [B, 2, H, W] flow = correspondence - coords_init # flow at feature resolution match_prob = prob flow_x = -flow[:, :1] # [B, 1, H, W] return flow_x, match_prob def correlation_softmax_depth(feature0, feature1, intrinsics, pose, depth_candidates, depth_from_argmax=False, pred_bidir_depth=False, ): b, c, h, w = feature0.size() assert depth_candidates.dim() == 4 # [B, D, H, W] scale_factor = c ** 0.5 if pred_bidir_depth: feature0, feature1 = torch.cat((feature0, feature1), dim=0), torch.cat((feature1, feature0), dim=0) intrinsics = intrinsics.repeat(2, 1, 1) pose = torch.cat((pose, torch.inverse(pose)), dim=0) depth_candidates = depth_candidates.repeat(2, 1, 1, 1) # depth candidates are actually inverse depth warped_feature1 = warp_with_pose_depth_candidates(feature1, intrinsics, pose, 1. / depth_candidates, ) # [B, C, D, H, W] correlation = (feature0.unsqueeze(2) * warped_feature1).sum(1) / scale_factor # [B, D, H, W] match_prob = F.softmax(correlation, dim=1) # [B, D, H, W] # for cross-task transfer (flow -> depth), extract depth with argmax at test time if depth_from_argmax: index = torch.argmax(match_prob, dim=1, keepdim=True) depth = torch.gather(depth_candidates, dim=1, index=index) else: depth = (match_prob * depth_candidates).sum(dim=1, keepdim=True) # [B, 1, H, W] return depth, match_prob def warp_with_pose_depth_candidates(feature1, intrinsics, pose, depth, clamp_min_depth=1e-3, ): """ feature1: [B, C, H, W] intrinsics: [B, 3, 3] pose: [B, 4, 4] depth: [B, D, H, W] """ assert intrinsics.size(1) == intrinsics.size(2) == 3 assert pose.size(1) == pose.size(2) == 4 assert depth.dim() == 4 b, d, h, w = depth.size() c = feature1.size(1) with torch.no_grad(): # pixel coordinates grid = coords_grid(b, h, w, homogeneous=True, device=depth.device) # [B, 3, H, W] # back project to 3D and transform viewpoint points = torch.inverse(intrinsics).bmm(grid.view(b, 3, -1)) # [B, 3, H*W] points = torch.bmm(pose[:, :3, :3], points).unsqueeze(2).repeat( 1, 1, d, 1) * depth.view(b, 1, d, h * w) # [B, 3, D, H*W] points = points + pose[:, :3, -1:].unsqueeze(-1) # [B, 3, D, H*W] # reproject to 2D image plane points = torch.bmm(intrinsics, points.view(b, 3, -1)).view(b, 3, d, h * w) # [B, 3, D, H*W] pixel_coords = points[:, :2] / points[:, -1:].clamp(min=clamp_min_depth) # [B, 2, D, H*W] # normalize to [-1, 1] x_grid = 2 * pixel_coords[:, 0] / (w - 1) - 1 y_grid = 2 * pixel_coords[:, 1] / (h - 1) - 1 grid = torch.stack([x_grid, y_grid], dim=-1) # [B, D, H*W, 2] # sample features warped_feature = F.grid_sample(feature1, grid.view(b, d * h, w, 2), mode='bilinear', padding_mode='zeros', align_corners=True).view(b, c, d, h, w) # [B, C, D, H, W] return warped_feature