import torch.nn.functional as F class InputPadder: """ Pads images such that dimensions are divisible by divisor """ def __init__(self, dims, divisor=16): self.ht, self.wd = dims[-2:] pad_ht = (((self.ht // divisor) + 1) * divisor - self.ht) % divisor pad_wd = (((self.wd // divisor) + 1) * divisor - self.wd) % divisor self._pad = [pad_wd // 2, pad_wd - pad_wd // 2, pad_ht // 2, pad_ht - pad_ht // 2] def pad(self, *inputs): if len(inputs) == 1: return F.pad(inputs[0], self._pad, mode='replicate') else: return [F.pad(x, self._pad, mode='replicate') for x in inputs] def unpad(self, *inputs): if len(inputs) == 1: return self._unpad(inputs[0]) else: return [self._unpad(x) for x in inputs] def _unpad(self, x): ht, wd = x.shape[-2:] c = [self._pad[2], ht - self._pad[3], self._pad[0], wd - self._pad[1]] return x[..., c[0]:c[1], c[2]:c[3]]