#!/usr/bin/env python import torch import numpy as np import torch.nn as nn import torch.nn.functional as F import torchvision.models as models import cv2 import numpy from modules.components.m2m_unimatch.unimatch.unimatch import UniMatch from modules.components.m2m_flow_former.LatentCostFormer.transformer import * from modules.components.m2m_flow_former.cfg import get_cfg device = torch.device("cuda" if torch.cuda.is_available() else "cpu") losses = {} def register(name): def decorator(cls): losses[name] = cls return cls return decorator def make_loss_dict(loss_cfgs): loss_dict = dict() def make_loss(loss_spec): loss = losses[loss_spec['name']](**loss_spec['args']) return loss for loss_cfg in loss_cfgs: loss_dict[loss_cfg['name']] = make_loss(loss_cfg) return loss_dict @register('frequency') class Frequency(nn.Module): def __init__(self, weight): super(Frequency, self).__init__() self.weight = weight def forward(self, imgt, imgt_pred, **kwargs): fft_pred = torch.fft.fft2(imgt_pred) amp_pred = torch.abs(fft_pred) pha_pred = torch.angle(fft_pred) fft_gt = torch.fft.fft2(imgt) amp_gt = torch.abs(fft_gt) pha_gt = torch.angle(fft_gt) amp_loss = F.l1_loss(input=amp_pred, target=amp_gt, reduction='mean') pha_loss = F.l1_loss(input=pha_pred, target=pha_gt, reduction='mean') return (amp_loss + pha_loss) * self.weight @register('bi_frequency') class BidirectionalFrequency(nn.Module): def __init__(self, weight): super(BidirectionalFrequency, self).__init__() self.weight = weight def get_amp_pha(self, img): fft = torch.fft.fft2(img) amplitude = torch.abs(fft) phase = torch.angle(fft) return amplitude, phase def forward(self, img0, img1, imgt, imgt_pred, **kwargs): amp0, pha0 = self.get_amp_pha(img0) amp1, pha1 = self.get_amp_pha(img1) ampt, phat = self.get_amp_pha(imgt) ampt_pred, phat_pred = self.get_amp_pha(imgt_pred) amp_loss0 = F.l1_loss(torch.abs(amp0-ampt), torch.abs(amp0-ampt_pred)) amp_loss1 = F.l1_loss(torch.abs(amp1-ampt), torch.abs(amp1-ampt_pred)) pha_loss0 = F.l1_loss(torch.abs(pha0-phat), torch.abs(pha0-phat_pred)) pha_loss1 = F.l1_loss(torch.abs(pha1-phat), torch.abs(pha1-phat_pred)) return (amp_loss0 + amp_loss1 + pha_loss0 + pha_loss1) * self.weight @register('l1') class L1(nn.Module): def __init__(self): super(L1, self).__init__() # end def forward(self, img0, img1): return F.l1_loss(input=img0, target=img1, reduction='mean') # end # end @register('charbonnier') class Charbonnier(nn.Module): def __init__(self, weight): super(Charbonnier, self).__init__() self.weight = weight # end def forward(self, imgt, imgt_pred, **kwargs): return (((imgt - imgt_pred) ** 2 + 1e-6) ** 0.5).mean() * self.weight # end # end @register('multiple_charbonnier') class MultipleCharbonnier(nn.Module): def __init__(self, weight, gamma, **kwargs): super().__init__() self.weight = weight self.gamma = gamma self.charbonnier = Charbonnier(1) def forward(self, imgt_preds, imgt, **kwargs): loss_charbonnier = torch.Tensor([0]).cuda() for i in range(len(imgt_preds)): i_weight = self.gamma ** (len(imgt_preds) - i - 1) loss_charbonnier += self.charbonnier(imgt_preds[i], imgt) * i_weight return loss_charbonnier * self.weight @register('ternary') class Ternary(nn.Module): def __init__(self, weight): super(Ternary, self).__init__() patch_size = 7 out_channels = patch_size * patch_size self.w = np.eye(out_channels).reshape( (patch_size, patch_size, 1, out_channels)) self.w = np.transpose(self.w, (3, 2, 0, 1)) self.w = torch.tensor(self.w).float().to(device) self.weight = weight # end def transform(self, img): patches = F.conv2d(img, self.w, padding=3, bias=None) transf = patches - img transf_norm = transf / torch.sqrt(0.81 + transf ** 2) return transf_norm # end def rgb2gray(self, rgb): r, g, b = rgb[:, 0:1, :, :], rgb[:, 1:2, :, :], rgb[:, 2:3, :, :] gray = 0.2989 * r + 0.5870 * g + 0.1140 * b return gray # end def hamming(self, t1, t2): dist = (t1 - t2) ** 2 dist_norm = torch.mean(dist / (0.1 + dist), 1, True) return dist_norm # end def valid_mask(self, t, padding): n, _, h, w = t.size() inner = torch.ones(n, 1, h - 2 * padding, w - 2 * padding).type_as(t) mask = F.pad(inner, [padding] * 4) return mask # end def forward(self, imgt, imgt_pred, **kwargs): imgt = self.transform(self.rgb2gray(imgt)) imgt_pred = self.transform(self.rgb2gray(imgt_pred)) return (self.hamming(imgt, imgt_pred) * self.valid_mask(imgt, 1)).mean() * self.weight # end # end @register('multiple_ternary') class MultipleTernary(nn.Module): def __init__(self, weight, gamma, **kwargs): super().__init__() self.weight = weight self.gamma = gamma self.ternary = Ternary(1) def forward(self, imgt_preds, imgt, **kwargs): loss_ter = torch.Tensor([0]).cuda() for i in range(len(imgt_preds)): i_weight = self.gamma ** (len(imgt_preds) - i - 1) loss_ter += self.ternary(imgt_preds[i], imgt) * i_weight return loss_ter * self.weight @register('sobel') class SOBEL(nn.Module): def __init__(self): super(SOBEL, self).__init__() self.kernelX = torch.tensor([ [1, 0, -1], [2, 0, -2], [1, 0, -1], ]).float() self.kernelY = self.kernelX.clone().T self.kernelX = self.kernelX.unsqueeze(0).unsqueeze(0).to(device) self.kernelY = self.kernelY.unsqueeze(0).unsqueeze(0).to(device) # end def forward(self, pred, gt): N, C, H, W = pred.shape[0], pred.shape[1], pred.shape[2], pred.shape[3] img_stack = torch.cat( [pred.reshape(N * C, 1, H, W), gt.reshape(N * C, 1, H, W)], 0) sobel_stack_x = F.conv2d(img_stack, self.kernelX, padding=1) sobel_stack_y = F.conv2d(img_stack, self.kernelY, padding=1) pred_X, gt_X = sobel_stack_x[:N * C], sobel_stack_x[N * C:] pred_Y, gt_Y = sobel_stack_y[:N * C], sobel_stack_y[N * C:] L1X, L1Y = torch.abs(pred_X - gt_X), torch.abs(pred_Y - gt_Y) loss = (L1X + L1Y) return loss # end # end class MeanShift(nn.Conv2d): def __init__(self, data_mean, data_std, data_range=1, norm=True): c = len(data_mean) super(MeanShift, self).__init__(c, c, kernel_size=1) std = torch.Tensor(data_std) self.weight.data = torch.eye(c).view(c, c, 1, 1) if norm: self.weight.data.div_(std.view(c, 1, 1, 1)) self.bias.data = -1 * data_range * torch.Tensor(data_mean) self.bias.data.div_(std) else: self.weight.data.mul_(std.view(c, 1, 1, 1)) self.bias.data = data_range * torch.Tensor(data_mean) # end self.requires_grad = False # end # end @register('vgg') class VGGPerceptualLoss(nn.Module): def __init__(self, weight=1): super(VGGPerceptualLoss, self).__init__() blocks = [] pretrained = True self.weight = weight self.vgg_pretrained_features = models.vgg19(pretrained=pretrained).features self.normalize = MeanShift([0.485, 0.456, 0.406], [0.229, 0.224, 0.225], norm=True).cuda() for param in self.parameters(): param.requires_grad = False # end # end def forward(self, imgt, imgt_pred, **kwargs): imgt = self.normalize(imgt) imgt_pred = self.normalize(imgt_pred) indices = [2, 7, 12, 21, 30] weights = [1.0 / 2.6, 1.0 / 4.8, 1.0 / 3.7, 1.0 / 5.6, 10 / 1.5] k = 0 loss = 0 for i in range(indices[-1]): imgt = self.vgg_pretrained_features[i](imgt) imgt_pred = self.vgg_pretrained_features[i](imgt_pred) if (i + 1) in indices: loss += weights[k] * (imgt - imgt_pred.detach()).abs().mean() * 0.1 k += 1 # end # end return loss * self.weight # end # end @register('ada_charbonnier') class AdaCharbonnierLoss(nn.Module): def __init__(self, weight) -> None: super().__init__() self.weight = weight def forward(self, imgt_pred, imgt, weight, **kwargs): alpha = weight / 2 epsilon = 10 ** (-(10 * weight - 1) / 3) diff = imgt_pred - imgt loss = ((diff ** 2 + epsilon ** 2) ** alpha).mean() return loss @register('multiple_flow') class MultipleFlowLoss(nn.Module): def __init__(self, weight, beta=0.3) -> None: super().__init__() self.weight = weight self.beta = beta self.ada_cb_loss = AdaCharbonnierLoss(1.0) def forward(self, flow0_pred, flow1_pred, flowt0, flowt1, **kwargs): robust_weight0 = self.get_mutli_flow_robust_weight(flow0_pred[0], flowt0) robust_weight1 = self.get_mutli_flow_robust_weight(flow1_pred[0], flowt1) loss = 0 h, w = flowt0.shape[-2:] for lvl in range(0, len(flow0_pred)): h_lvl, w_lvl = flow0_pred[lvl].shape[-2:] scale_factor = h / h_lvl loss = loss + self.ada_cb_loss(**{ 'imgt_pred': self.resize(flow0_pred[lvl], scale_factor), 'imgt': flowt0, 'weight': robust_weight0 }) loss = loss + self.ada_cb_loss(**{ 'imgt_pred': self.resize(flow1_pred[lvl], scale_factor), 'imgt': flowt1, 'weight': robust_weight1 }) return loss * self.weight def resize(self, x, scale_factor): return scale_factor * F.interpolate(x, scale_factor=scale_factor, mode="bilinear", align_corners=False) def get_mutli_flow_robust_weight(self, flow_pred, flow_gt): dims = flow_pred.shape if len(dims) == 5: b, num_flows, c, h, w = dims else: b, c, h, w = dims num_flows = 1 flow_pred = flow_pred.view(b, num_flows, c, h, w) flow_gt = flow_gt.repeat(1, num_flows, 1, 1).view(b, num_flows, c, h, w) epe = ((flow_pred.detach() - flow_gt) ** 2).sum(dim=2, keepdim=True).max(1)[0] ** 0.5 # robust_weight = torch.exp(-self.beta * epe) robust_weight = torch.ones_like(epe) return robust_weight @register('lap') class LapLoss(torch.nn.Module): @staticmethod def gauss_kernel(size=5, channels=3): kernel = torch.tensor([[1., 4., 6., 4., 1], [4., 16., 24., 16., 4.], [6., 24., 36., 24., 6.], [4., 16., 24., 16., 4.], [1., 4., 6., 4., 1.]]) kernel /= 256. kernel = kernel.repeat(channels, 1, 1, 1) kernel = kernel.to(device) return kernel @staticmethod def laplacian_pyramid(img, kernel, max_levels=3): def downsample(x): return x[:, :, ::2, ::2] def upsample(x): cc = torch.cat([x, torch.zeros(x.shape[0], x.shape[1], x.shape[2], x.shape[3]).to(device)], dim=3) cc = cc.view(x.shape[0], x.shape[1], x.shape[2]*2, x.shape[3]) cc = cc.permute(0,1,3,2) cc = torch.cat([cc, torch.zeros(x.shape[0], x.shape[1], x.shape[3], x.shape[2]*2).to(device)], dim=3) cc = cc.view(x.shape[0], x.shape[1], x.shape[3]*2, x.shape[2]*2) x_up = cc.permute(0,1,3,2) return conv_gauss(x_up, 4*LapLoss.gauss_kernel(channels=x.shape[1])) def conv_gauss(img, kernel): img = torch.nn.functional.pad(img, (2, 2, 2, 2), mode='reflect') out = torch.nn.functional.conv2d(img, kernel, groups=img.shape[1]) return out current = img pyr = [] for level in range(max_levels): filtered = conv_gauss(current, kernel) down = downsample(filtered) up = upsample(down) diff = current-up pyr.append(diff) current = down return pyr def __init__(self, max_levels=5, channels=3): super(LapLoss, self).__init__() self.max_levels = max_levels self.gauss_kernel = LapLoss.gauss_kernel(channels=channels) def forward(self, imgt_pred, imgt): pyr_pred = LapLoss.laplacian_pyramid( img=imgt_pred, kernel=self.gauss_kernel, max_levels=self.max_levels) pyr_target = LapLoss.laplacian_pyramid( img=imgt, kernel=self.gauss_kernel, max_levels=self.max_levels) return sum(torch.nn.functional.l1_loss(a, b) for a, b in zip(pyr_pred, pyr_target)) @register('vos') class VOSLoss(nn.Module): def __init__(self, weight): super(VOSLoss, self).__init__() self.weight = weight def forward(self, segt, segt_f_binary, segt_b_binary, **kwargs): # segt = torch.cat([segt < 0.5, segt > 0.5], dim=1).float() loss = F.binary_cross_entropy(segt_f_binary, segt) + F.binary_cross_entropy(segt_b_binary, segt) + F.binary_cross_entropy(segt_b_binary, segt_f_binary) return loss * self.weight @register('texture_consistency') class TCLoss(nn.Module): def __init__(self, weight): super(TCLoss, self).__init__() self.weight = weight def rgb2gray(self, rgb): r, g, b = rgb[:, 0:1, :, :], rgb[:, 1:2, :, :], rgb[:, 2:3, :, :] gray = 0.2989 * r + 0.5870 * g + 0.1140 * b return gray def forward(self, imgt_pred, imgt, **kwargs): b, c, h, w = imgt_pred.shape imgt_g = self.rgb2gray(imgt) imgt_pred_g = self.rgb2gray(imgt_pred) imgt_patched = F.unfold(imgt_g, [3, 3], padding=1).view(b, 9, h, w) census_imgt = ((imgt_patched - imgt_g) < 0).to(torch.float32) imgt_pred_patched = F.unfold(imgt_pred_g, [3, 3], padding=1).view(b, 9, h, w) census_imgt_pred = ((imgt_pred_patched - imgt_pred_g) < 0).to(torch.float32).view(b, 9, 1, h, w) census_imgt_unfold = F.unfold(census_imgt, [5, 5], padding=2).view(b, 9, 25, h, w) diff = (census_imgt_unfold - census_imgt_pred).abs().sum(dim=1) valid_mask = torch.argmax(diff, dim=1, keepdim=True).view(b, 1, 1, h, w) imgt_patched = F.unfold(imgt, [3, 3], padding=1).view(b, c * 9, h, w) imgt_masked = torch.take_along_dim( F.unfold(imgt_patched, kernel_size=[5, 5], padding=2).view(b, c * 9, 25, h, w), valid_mask, 2) imgt_pred_patched = F.unfold(imgt, [3, 3], padding=1).view(b, c * 9, 1, h, w) loss = F.l1_loss(imgt_masked, imgt_pred_patched) return loss * self.weight @register('flow_consistency') class FCLoss(nn.Module): def __init__(self, weight): super(FCLoss, self).__init__() self.weight = weight # self.of_model = UniMatch(2, 128, 4, 1, 4, 6, True) cfg = get_cfg().latentcostformer self.of_model = FlowFormer(cfg) checkpoint = torch.load('./modules/components/m2m_flow_former/flowformer++.pth') checkpoint_mod = {k.replace('module.', ''): checkpoint[k] for k in checkpoint.keys()} self.of_model.load_state_dict(checkpoint_mod, strict=False) self.of_model.to(device) self.of_model.eval() for p in self.of_model.parameters(True): p.requires_grad = False def forward(self, imgt_pred, img0, img1, flowt0, flowt1, **kwargs): self.of_model.eval() # flowt0_pred = self.of_model(imgt_pred, img0, 'swin', [2, 8], [-1, 4], [-1, 1], 6)[-1] # flowt1_pred = self.of_model(imgt_pred, img1, 'swin', [2, 8], [-1, 4], [-1, 1], 6)[-1] flowt0_pred = self.of_model(imgt_pred, img0)[-1] flowt1_pred = self.of_model(imgt_pred, img1)[-1] return ((flowt0_pred - flowt0).abs().mean() + (flowt1_pred - flowt1).abs().mean()) * self.weight, flowt0_pred def census_transform(img, kernel_size=3): """ Calculates the census transform of an image of shape [N x C x H x W] with batch size N, number of channels C, height H and width W. If C > 1, the census transform is applied independently on each channel. :param img: input image as torch.Tensor of shape [H x C x H x W] :return: census transform of img """ assert len(img.size()) == 4 if kernel_size != 3: raise NotImplementedError n, c, h, w = img.size() census = torch.zeros((n, c, h - 2, w - 2), dtype=torch.uint8, device=img.device) cp = img[:, :, 1:h - 1, 1:w - 1] offsets = [(u, v) for v in range(3) for u in range(3) if not u == 1 == v] # do the pixel comparisons for u, v in offsets: census = (census << 1) | (img[:, :, v:v + h - 2, u:u + w - 2] >= cp).byte() return torch.nn.functional.pad(census.float() / 255, (1, 1, 1, 1), mode='reflect') class CensusTransform(torch.nn.Module): """ Calculates the census transform of an image of shape [N x C x H x W] with batch size N, number of channels C, height H and width W. If C > 1, the census transform is applied independently on each channel. :param img: input image as torch.Tensor of shape [H x C x H x W] :return: census transform of img """ def __init__(self, kernel_size=3): super().__init__() self._kernel_size = kernel_size def forward(self, x): x = census_transform(x, self._kernel_size) return x @register('texture_consistency_original') class PatchMatching(nn.Module): def __init__(self, weight, kSize=3, nsize=7, scale=4, alpha=1): super(PatchMatching, self).__init__() self.scale = scale self.kSize = kSize self.nsize = nsize self.alpha = alpha self.weight = weight self.ct = CensusTransform() def _unfold(self, data, with_unfold=False): if self.scale != 1: data = torch.nn.functional.interpolate(data, scale_factor=1.0 / self.scale, mode='bicubic', align_corners=False) pad = self.kSize // 2 data_pad = torch.nn.functional.pad(data, (pad, pad, pad, pad), mode='reflect') d1 = torch.nn.functional.unfold(data_pad, kernel_size=self.kSize) # .permute(0,2,1) if not with_unfold: return d1.permute(0, 2, 1).unsqueeze(-2) else: b, c, h, w = data.size() # print('d1',d1.shape,data.shape) d1 = d1.view(b, -1, h, w) c1 = d1.size()[1] pad = self.nsize // 2 d1_pad = torch.nn.functional.pad(d1, (pad, pad, pad, pad), mode='reflect') d1_pad_unflod = torch.nn.functional.unfold(d1_pad, kernel_size=self.nsize) # .permute(0,2,1) d1_pad_unflod = d1_pad_unflod.view(b, c1, -1, h * w).permute(0, 3, 2, 1) # print(d1_pad_unflod.shape) return d1_pad_unflod def _match(self, pred, ref_d0, ref_d1): # b b, n, c = pred.size() print('--', pred.shape) pred_2 = (pred ** 2).sum(-1).view(b, n, -1) ref_d0_2 = (ref_d0 ** 2).sum(-1).view(b, -1, n) ref_d1_2 = (ref_d1 ** 2).sum(-1).view(b, -1, n) # gt_2 = (gt**2).sum(-1).view(b,-1,n) error_d0 = pred_2 + ref_d0_2 - 2.0 * torch.matmul(pred, ref_d0.permute(0, 2, 1)) error_d1 = pred_2 + ref_d1_2 - 2.0 * torch.matmul(pred, ref_d1.permute(0, 2, 1)) score_d0 = torch.exp(self.alpha * error_d0) score_d1 = torch.exp(self.alpha * error_d1) # print('score_d0',score_d0.shape,score_d1.shape) weight, ind = torch.min(score_d0, dim=2) index_d0 = ind.unsqueeze(-1).expand([-1, -1, c]) print(ref_d0.shape, index_d0.shape) matched_d0 = torch.gather(ref_d0, dim=1, index=index_d0) weight, ind = torch.min(score_d1, dim=2) index_d1 = ind.unsqueeze(-1).expand([-1, -1, c]) matched_d1 = torch.gather(ref_d1, dim=1, index=index_d1) # print('matched_d1',matched_d1.shape) # error_gt_d0 = gt_2 + ref_d0_2 - 2.0 * torch.matmul(ref_d0,gt.permute(0,2,1)) # score_gt_d0 = torch.exp(self.alpha * error_gt_d0) # weight,ind = torch.min(score_gt_d0,dim=2) # index_d0 = ind.unsqueeze(-1).expand([-1,-1,c]) # matched_d0 = torch.gather(ref_d0,dim=1,index=index_d0) loss = ((pred - matched_d0) ** 2).mean() + ((pred - matched_d1) ** 2).mean() return loss # error_d1 = pred_2 + ref_d0_2 - 2.0 * torch.matmul(pred,ref_d0.permute(0,2,1)) def forward(self, imgt_pred, imgt, **kwarps): pred_ct = self.ct(imgt_pred) gt_ct = self.ct(imgt) pred_ct = self._unfold(pred_ct) gt_ct = self._unfold(gt_ct, with_unfold=True) pred_ct = pred_ct.repeat(1, 1, self.nsize ** 2, 1) dis_I_ct = ((pred_ct - gt_ct) ** 2).sum(-1) weight, ind = torch.min(dis_I_ct, dim=2) index_d = ind.unsqueeze(-1).unsqueeze(-1).repeat(1, 1, self.nsize ** 2 * 2, 3 * self.kSize ** 2) imgt_pred = self._unfold(imgt_pred) imgt = self._unfold(imgt, with_unfold=True) imgt_pred = imgt_pred.repeat(1, 1, self.nsize ** 2, 1) matched_d = torch.gather(imgt, dim=2, index=index_d) # print(pred.shape,matched_d.shape) loss = ((imgt_pred[:, :, 0] - matched_d[:, :, 0]) ** 2) * 0.5 return loss.mean() * self.weight