|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from timm.models.layers import Mlp, DropPath, to_2tuple, trunc_normal_ |
|
import math |
|
import numpy as np |
|
|
|
class ResidualBlock(nn.Module): |
|
def __init__(self, in_planes, planes, norm_fn='group', stride=1): |
|
super(ResidualBlock, self).__init__() |
|
|
|
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, padding=1, stride=stride) |
|
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, padding=1) |
|
self.relu = nn.ReLU(inplace=True) |
|
|
|
num_groups = planes // 8 |
|
|
|
if norm_fn == 'group': |
|
self.norm1 = nn.GroupNorm(num_groups=num_groups, num_channels=planes) |
|
self.norm2 = nn.GroupNorm(num_groups=num_groups, num_channels=planes) |
|
if not stride == 1: |
|
self.norm3 = nn.GroupNorm(num_groups=num_groups, num_channels=planes) |
|
|
|
elif norm_fn == 'batch': |
|
self.norm1 = nn.BatchNorm2d(planes) |
|
self.norm2 = nn.BatchNorm2d(planes) |
|
if not stride == 1: |
|
self.norm3 = nn.BatchNorm2d(planes) |
|
|
|
elif norm_fn == 'instance': |
|
self.norm1 = nn.InstanceNorm2d(planes) |
|
self.norm2 = nn.InstanceNorm2d(planes) |
|
if not stride == 1: |
|
self.norm3 = nn.InstanceNorm2d(planes) |
|
|
|
elif norm_fn == 'none': |
|
self.norm1 = nn.Sequential() |
|
self.norm2 = nn.Sequential() |
|
if not stride == 1: |
|
self.norm3 = nn.Sequential() |
|
|
|
if stride == 1: |
|
self.downsample = None |
|
|
|
else: |
|
self.downsample = nn.Sequential( |
|
nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride), self.norm3) |
|
|
|
|
|
def forward(self, x): |
|
y = x |
|
y = self.relu(self.norm1(self.conv1(y))) |
|
y = self.relu(self.norm2(self.conv2(y))) |
|
|
|
if self.downsample is not None: |
|
x = self.downsample(x) |
|
|
|
return self.relu(x+y) |
|
|
|
|
|
|
|
class BottleneckBlock(nn.Module): |
|
def __init__(self, in_planes, planes, norm_fn='group', stride=1): |
|
super(BottleneckBlock, self).__init__() |
|
|
|
self.conv1 = nn.Conv2d(in_planes, planes//4, kernel_size=1, padding=0) |
|
self.conv2 = nn.Conv2d(planes//4, planes//4, kernel_size=3, padding=1, stride=stride) |
|
self.conv3 = nn.Conv2d(planes//4, planes, kernel_size=1, padding=0) |
|
self.relu = nn.ReLU(inplace=True) |
|
|
|
num_groups = planes // 8 |
|
|
|
if norm_fn == 'group': |
|
self.norm1 = nn.GroupNorm(num_groups=num_groups, num_channels=planes//4) |
|
self.norm2 = nn.GroupNorm(num_groups=num_groups, num_channels=planes//4) |
|
self.norm3 = nn.GroupNorm(num_groups=num_groups, num_channels=planes) |
|
if not stride == 1: |
|
self.norm4 = nn.GroupNorm(num_groups=num_groups, num_channels=planes) |
|
|
|
elif norm_fn == 'batch': |
|
self.norm1 = nn.BatchNorm2d(planes//4) |
|
self.norm2 = nn.BatchNorm2d(planes//4) |
|
self.norm3 = nn.BatchNorm2d(planes) |
|
if not stride == 1: |
|
self.norm4 = nn.BatchNorm2d(planes) |
|
|
|
elif norm_fn == 'instance': |
|
self.norm1 = nn.InstanceNorm2d(planes//4) |
|
self.norm2 = nn.InstanceNorm2d(planes//4) |
|
self.norm3 = nn.InstanceNorm2d(planes) |
|
if not stride == 1: |
|
self.norm4 = nn.InstanceNorm2d(planes) |
|
|
|
elif norm_fn == 'none': |
|
self.norm1 = nn.Sequential() |
|
self.norm2 = nn.Sequential() |
|
self.norm3 = nn.Sequential() |
|
if not stride == 1: |
|
self.norm4 = nn.Sequential() |
|
|
|
if stride == 1: |
|
self.downsample = None |
|
|
|
else: |
|
self.downsample = nn.Sequential( |
|
nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride), self.norm4) |
|
|
|
|
|
def forward(self, x): |
|
y = x |
|
y = self.relu(self.norm1(self.conv1(y))) |
|
y = self.relu(self.norm2(self.conv2(y))) |
|
y = self.relu(self.norm3(self.conv3(y))) |
|
|
|
if self.downsample is not None: |
|
x = self.downsample(x) |
|
|
|
return self.relu(x+y) |
|
|
|
class BasicEncoder(nn.Module): |
|
def __init__(self, input_dim=3, output_dim=128, norm_fn='batch', dropout=0.0): |
|
super(BasicEncoder, self).__init__() |
|
self.norm_fn = norm_fn |
|
mul = input_dim // 3 |
|
|
|
if self.norm_fn == 'group': |
|
self.norm1 = nn.GroupNorm(num_groups=8, num_channels=64 * mul) |
|
|
|
elif self.norm_fn == 'batch': |
|
self.norm1 = nn.BatchNorm2d(64 * mul) |
|
|
|
elif self.norm_fn == 'instance': |
|
self.norm1 = nn.InstanceNorm2d(64 * mul) |
|
|
|
elif self.norm_fn == 'none': |
|
self.norm1 = nn.Sequential() |
|
|
|
self.conv1 = nn.Conv2d(input_dim, 64 * mul, kernel_size=7, stride=2, padding=3) |
|
self.relu1 = nn.ReLU(inplace=True) |
|
|
|
self.in_planes = 64 * mul |
|
self.layer1 = self._make_layer(64 * mul, stride=1) |
|
self.layer2 = self._make_layer(96 * mul, stride=2) |
|
self.layer3 = self._make_layer(128 * mul, stride=2) |
|
|
|
|
|
self.conv2 = nn.Conv2d(128 * mul, output_dim, kernel_size=1) |
|
|
|
self.dropout = None |
|
if dropout > 0: |
|
self.dropout = nn.Dropout2d(p=dropout) |
|
|
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') |
|
elif isinstance(m, (nn.BatchNorm2d, nn.InstanceNorm2d, nn.GroupNorm)): |
|
if m.weight is not None: |
|
nn.init.constant_(m.weight, 1) |
|
if m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
|
|
def _make_layer(self, dim, stride=1): |
|
layer1 = ResidualBlock(self.in_planes, dim, self.norm_fn, stride=stride) |
|
layer2 = ResidualBlock(dim, dim, self.norm_fn, stride=1) |
|
layers = (layer1, layer2) |
|
|
|
self.in_planes = dim |
|
return nn.Sequential(*layers) |
|
|
|
def compute_params(self): |
|
num = 0 |
|
for param in self.parameters(): |
|
num += np.prod(param.size()) |
|
|
|
return num |
|
|
|
|
|
def forward(self, x): |
|
|
|
|
|
is_list = isinstance(x, tuple) or isinstance(x, list) |
|
if is_list: |
|
batch_dim = x[0].shape[0] |
|
x = torch.cat(x, dim=0) |
|
|
|
x = self.conv1(x) |
|
x = self.norm1(x) |
|
x = self.relu1(x) |
|
|
|
x = self.layer1(x) |
|
x = self.layer2(x) |
|
x = self.layer3(x) |
|
|
|
x = self.conv2(x) |
|
|
|
if self.training and self.dropout is not None: |
|
x = self.dropout(x) |
|
|
|
if is_list: |
|
x = torch.split(x, [batch_dim, batch_dim], dim=0) |
|
|
|
return x |
|
|
|
|
|
class SmallEncoder(nn.Module): |
|
def __init__(self, output_dim=128, norm_fn='batch', dropout=0.0): |
|
super(SmallEncoder, self).__init__() |
|
self.norm_fn = norm_fn |
|
|
|
if self.norm_fn == 'group': |
|
self.norm1 = nn.GroupNorm(num_groups=8, num_channels=32) |
|
|
|
elif self.norm_fn == 'batch': |
|
self.norm1 = nn.BatchNorm2d(32) |
|
|
|
elif self.norm_fn == 'instance': |
|
self.norm1 = nn.InstanceNorm2d(32) |
|
|
|
elif self.norm_fn == 'none': |
|
self.norm1 = nn.Sequential() |
|
|
|
self.conv1 = nn.Conv2d(3, 32, kernel_size=7, stride=2, padding=3) |
|
self.relu1 = nn.ReLU(inplace=True) |
|
|
|
self.in_planes = 32 |
|
self.layer1 = self._make_layer(32, stride=1) |
|
self.layer2 = self._make_layer(64, stride=2) |
|
self.layer3 = self._make_layer(96, stride=2) |
|
|
|
self.dropout = None |
|
if dropout > 0: |
|
self.dropout = nn.Dropout2d(p=dropout) |
|
|
|
self.conv2 = nn.Conv2d(96, output_dim, kernel_size=1) |
|
|
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') |
|
elif isinstance(m, (nn.BatchNorm2d, nn.InstanceNorm2d, nn.GroupNorm)): |
|
if m.weight is not None: |
|
nn.init.constant_(m.weight, 1) |
|
if m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
|
|
def _make_layer(self, dim, stride=1): |
|
layer1 = BottleneckBlock(self.in_planes, dim, self.norm_fn, stride=stride) |
|
layer2 = BottleneckBlock(dim, dim, self.norm_fn, stride=1) |
|
layers = (layer1, layer2) |
|
|
|
self.in_planes = dim |
|
return nn.Sequential(*layers) |
|
|
|
|
|
def forward(self, x): |
|
|
|
|
|
is_list = isinstance(x, tuple) or isinstance(x, list) |
|
if is_list: |
|
batch_dim = x[0].shape[0] |
|
x = torch.cat(x, dim=0) |
|
|
|
x = self.conv1(x) |
|
x = self.norm1(x) |
|
x = self.relu1(x) |
|
|
|
x = self.layer1(x) |
|
x = self.layer2(x) |
|
x = self.layer3(x) |
|
x = self.conv2(x) |
|
|
|
if self.training and self.dropout is not None: |
|
x = self.dropout(x) |
|
|
|
if is_list: |
|
x = torch.split(x, [batch_dim, batch_dim], dim=0) |
|
|
|
return x |
|
|
|
class ConvNets(nn.Module): |
|
def __init__(self, in_dim, out_dim, inter_dim, depth, stride=1): |
|
super(ConvNets, self).__init__() |
|
|
|
self.conv_first = nn.Conv2d(in_dim, inter_dim, kernel_size=3, padding=1, stride=stride) |
|
self.conv_last = nn.Conv2d(inter_dim, out_dim, kernel_size=3, padding=1, stride=stride) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.inter_convs = nn.ModuleList( |
|
[ResidualBlock(inter_dim, inter_dim, norm_fn='none', stride=1) for i in range(depth)]) |
|
|
|
def forward(self, x): |
|
x = self.relu(self.conv_first(x)) |
|
for inter_conv in self.inter_convs: |
|
x = inter_conv(x) |
|
x = self.conv_last(x) |
|
return x |
|
|
|
class FlowHead(nn.Module): |
|
def __init__(self, input_dim=128, hidden_dim=256): |
|
super(FlowHead, self).__init__() |
|
self.conv1 = nn.Conv2d(input_dim, hidden_dim, 3, padding=1) |
|
self.conv2 = nn.Conv2d(hidden_dim, 2, 3, padding=1) |
|
self.relu = nn.ReLU(inplace=True) |
|
|
|
def forward(self, x): |
|
return self.conv2(self.relu(self.conv1(x))) |
|
|
|
class ConvGRU(nn.Module): |
|
def __init__(self, hidden_dim=128, input_dim=192+128): |
|
super(ConvGRU, self).__init__() |
|
self.convz = nn.Conv2d(hidden_dim+input_dim, hidden_dim, 3, padding=1) |
|
self.convr = nn.Conv2d(hidden_dim+input_dim, hidden_dim, 3, padding=1) |
|
self.convq = nn.Conv2d(hidden_dim+input_dim, hidden_dim, 3, padding=1) |
|
|
|
def forward(self, h, x): |
|
hx = torch.cat([h, x], dim=1) |
|
|
|
z = torch.sigmoid(self.convz(hx)) |
|
r = torch.sigmoid(self.convr(hx)) |
|
q = torch.tanh(self.convq(torch.cat([r*h, x], dim=1))) |
|
|
|
h = (1-z) * h + z * q |
|
return h |
|
|
|
class SepConvGRU(nn.Module): |
|
def __init__(self, hidden_dim=128, input_dim=192+128): |
|
super(SepConvGRU, self).__init__() |
|
self.convz1 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (1,5), padding=(0,2)) |
|
self.convr1 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (1,5), padding=(0,2)) |
|
self.convq1 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (1,5), padding=(0,2)) |
|
|
|
self.convz2 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (5,1), padding=(2,0)) |
|
self.convr2 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (5,1), padding=(2,0)) |
|
self.convq2 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (5,1), padding=(2,0)) |
|
|
|
|
|
def forward(self, h, x): |
|
|
|
hx = torch.cat([h, x], dim=1) |
|
z = torch.sigmoid(self.convz1(hx)) |
|
r = torch.sigmoid(self.convr1(hx)) |
|
q = torch.tanh(self.convq1(torch.cat([r*h, x], dim=1))) |
|
h = (1-z) * h + z * q |
|
|
|
|
|
hx = torch.cat([h, x], dim=1) |
|
z = torch.sigmoid(self.convz2(hx)) |
|
r = torch.sigmoid(self.convr2(hx)) |
|
q = torch.tanh(self.convq2(torch.cat([r*h, x], dim=1))) |
|
h = (1-z) * h + z * q |
|
|
|
return h |
|
|
|
class BasicMotionEncoder(nn.Module): |
|
def __init__(self, args): |
|
super(BasicMotionEncoder, self).__init__() |
|
cor_planes = args.motion_feature_dim |
|
self.convc1 = nn.Conv2d(cor_planes, 256, 1, padding=0) |
|
self.convc2 = nn.Conv2d(256, 192, 3, padding=1) |
|
self.convf1 = nn.Conv2d(2, 128, 7, padding=3) |
|
self.convf2 = nn.Conv2d(128, 64, 3, padding=1) |
|
self.conv = nn.Conv2d(64+192, 128-2, 3, padding=1) |
|
|
|
def forward(self, flow, corr): |
|
cor = F.relu(self.convc1(corr)) |
|
cor = F.relu(self.convc2(cor)) |
|
flo = F.relu(self.convf1(flow)) |
|
flo = F.relu(self.convf2(flo)) |
|
|
|
cor_flo = torch.cat([cor, flo], dim=1) |
|
out = F.relu(self.conv(cor_flo)) |
|
return torch.cat([out, flow], dim=1) |
|
|
|
class BasicFuseMotion(nn.Module): |
|
def __init__(self, args): |
|
super(BasicFuseMotion, self).__init__() |
|
cor_planes = args.motion_feature_dim |
|
out_planes = args.query_latent_dim |
|
|
|
self.normf1 = nn.InstanceNorm2d(128) |
|
self.normf2 = nn.InstanceNorm2d(128) |
|
|
|
self.convf1 = nn.Conv2d(2, 128, 3, padding=1) |
|
self.convf2 = nn.Conv2d(128, 128, 3, padding=1) |
|
self.convf3 = nn.Conv2d(128, 64, 3, padding=1) |
|
|
|
s = 1 |
|
self.normc1 = nn.InstanceNorm2d(256*s) |
|
self.normc2 = nn.InstanceNorm2d(256*s) |
|
self.normc3 = nn.InstanceNorm2d(256*s) |
|
|
|
self.convc1 = nn.Conv2d(cor_planes+128, 256*s, 1, padding=0) |
|
self.convc2 = nn.Conv2d(256*s, 256*s, 3, padding=1) |
|
self.convc3 = nn.Conv2d(256*s, 256*s, 3, padding=1) |
|
self.convc4 = nn.Conv2d(256*s, 256*s, 3, padding=1) |
|
self.conv = nn.Conv2d(256*s + 64, out_planes, 1, padding=0) |
|
|
|
def forward(self, flow, feat, context1=None): |
|
flo = F.relu(self.normf1(self.convf1(flow))) |
|
flo = F.relu(self.normf2(self.convf2(flo))) |
|
flo = self.convf3(flo) |
|
|
|
feat = torch.cat([feat, context1], dim=1) |
|
feat = F.relu(self.normc1(self.convc1(feat))) |
|
feat = F.relu(self.normc2(self.convc2(feat))) |
|
feat = F.relu(self.normc3(self.convc3(feat))) |
|
feat = self.convc4(feat) |
|
|
|
feat = torch.cat([flo, feat], dim=1) |
|
feat = F.relu(self.conv(feat)) |
|
|
|
return feat |
|
|
|
class BasicUpdateBlock(nn.Module): |
|
def __init__(self, args, hidden_dim=128, input_dim=128): |
|
super(BasicUpdateBlock, self).__init__() |
|
self.args = args |
|
self.encoder = BasicMotionEncoder(args) |
|
self.gru = SepConvGRU(hidden_dim=hidden_dim, input_dim=128+hidden_dim) |
|
self.flow_head = FlowHead(hidden_dim, hidden_dim=256) |
|
|
|
self.mask = nn.Sequential( |
|
nn.Conv2d(128, 256, 3, padding=1), |
|
nn.ReLU(inplace=True), |
|
nn.Conv2d(256, 64*9, 1, padding=0)) |
|
|
|
def forward(self, net, inp, corr, flow, upsample=True): |
|
motion_features = self.encoder(flow, corr) |
|
inp = torch.cat([inp, motion_features], dim=1) |
|
|
|
net = self.gru(net, inp) |
|
delta_flow = self.flow_head(net) |
|
|
|
|
|
mask = .25 * self.mask(net) |
|
return net, mask, delta_flow |
|
|
|
class DirectMeanMaskPredictor(nn.Module): |
|
def __init__(self, args): |
|
super(DirectMeanMaskPredictor, self).__init__() |
|
self.flow_head = FlowHead(args.predictor_dim, hidden_dim=256) |
|
self.mask = nn.Sequential( |
|
nn.Conv2d(args.predictor_dim, 256, 3, padding=1), |
|
nn.ReLU(inplace=True), |
|
nn.Conv2d(256, 64*9, 1, padding=0)) |
|
|
|
def forward(self, motion_features): |
|
delta_flow = self.flow_head(motion_features) |
|
mask = .25 * self.mask(motion_features) |
|
|
|
return mask, delta_flow |
|
|
|
class BaiscMeanPredictor(nn.Module): |
|
def __init__(self, args, hidden_dim=128): |
|
super(BaiscMeanPredictor, self).__init__() |
|
self.args = args |
|
self.encoder = BasicMotionEncoder(args) |
|
self.flow_head = FlowHead(hidden_dim, hidden_dim=256) |
|
|
|
self.mask = nn.Sequential( |
|
nn.Conv2d(128, 256, 3, padding=1), |
|
nn.ReLU(inplace=True), |
|
nn.Conv2d(256, 64*9, 1, padding=0)) |
|
|
|
def forward(self, latent, flow): |
|
motion_features = self.encoder(flow, latent) |
|
delta_flow = self.flow_head(motion_features) |
|
mask = .25 * self.mask(motion_features) |
|
|
|
return mask, delta_flow |
|
|
|
class BasicRPEEncoder(nn.Module): |
|
def __init__(self, args): |
|
super(BasicRPEEncoder, self).__init__() |
|
self.args = args |
|
dim = args.query_latent_dim |
|
self.encoder = nn.Sequential( |
|
nn.Linear(2, dim // 2), |
|
nn.ReLU(inplace=True), |
|
nn.Linear(dim // 2, dim), |
|
nn.ReLU(inplace=True), |
|
nn.Linear(dim, dim) |
|
) |
|
|
|
def forward(self, rpe_tokens): |
|
return self.encoder(rpe_tokens) |
|
|
|
from .twins import Block, CrossBlock |
|
|
|
class TwinsSelfAttentionLayer(nn.Module): |
|
def __init__(self, args): |
|
super(TwinsSelfAttentionLayer, self).__init__() |
|
self.args = args |
|
embed_dim = 256 |
|
num_heads = 8 |
|
mlp_ratio = 4 |
|
ws = 7 |
|
sr_ratio = 4 |
|
dpr = 0. |
|
drop_rate = 0. |
|
attn_drop_rate=0. |
|
|
|
self.local_block = Block(dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, drop=drop_rate, |
|
attn_drop=attn_drop_rate, drop_path=dpr, sr_ratio=sr_ratio, ws=ws, with_rpe=True) |
|
self.global_block = Block(dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, drop=drop_rate, |
|
attn_drop=attn_drop_rate, drop_path=dpr, sr_ratio=sr_ratio, ws=1, with_rpe=True) |
|
|
|
self.apply(self._init_weights) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
trunc_normal_(m.weight, std=.02) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
elif isinstance(m, nn.Conv2d): |
|
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels |
|
fan_out //= m.groups |
|
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) |
|
if m.bias is not None: |
|
m.bias.data.zero_() |
|
elif isinstance(m, nn.BatchNorm2d): |
|
m.weight.data.fill_(1.0) |
|
m.bias.data.zero_() |
|
|
|
def forward(self, x, tgt, size): |
|
x = self.local_block(x, size) |
|
x = self.global_block(x, size) |
|
|
|
tgt = self.local_block(tgt, size) |
|
tgt = self.global_block(tgt, size) |
|
return x, tgt |
|
|
|
class TwinsCrossAttentionLayer(nn.Module): |
|
def __init__(self, args): |
|
super(TwinsCrossAttentionLayer, self).__init__() |
|
self.args = args |
|
embed_dim = 256 |
|
num_heads = 8 |
|
mlp_ratio = 4 |
|
ws = 7 |
|
sr_ratio = 4 |
|
dpr = 0. |
|
drop_rate = 0. |
|
attn_drop_rate=0. |
|
|
|
self.local_block = Block(dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, drop=drop_rate, |
|
attn_drop=attn_drop_rate, drop_path=dpr, sr_ratio=sr_ratio, ws=ws, with_rpe=True) |
|
self.global_block = CrossBlock(dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, drop=drop_rate, |
|
attn_drop=attn_drop_rate, drop_path=dpr, sr_ratio=sr_ratio, ws=1, with_rpe=True) |
|
|
|
self.apply(self._init_weights) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
trunc_normal_(m.weight, std=.02) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
elif isinstance(m, nn.Conv2d): |
|
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels |
|
fan_out //= m.groups |
|
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) |
|
if m.bias is not None: |
|
m.bias.data.zero_() |
|
elif isinstance(m, nn.BatchNorm2d): |
|
m.weight.data.fill_(1.0) |
|
m.bias.data.zero_() |
|
|
|
def forward(self, x, tgt, size): |
|
x = self.local_block(x, size) |
|
tgt = self.local_block(tgt, size) |
|
x, tgt = self.global_block(x, tgt, size) |
|
|
|
return x, tgt |
|
|