|
import os |
|
import sys |
|
import torch |
|
import argparse |
|
import numpy as np |
|
import os.path as osp |
|
import re |
|
from imageio import imread, imwrite |
|
import torch.nn.functional as F |
|
|
|
sys.path.append('.') |
|
from utils.flow_generation.liteflownet.run import estimate |
|
|
|
|
|
|
|
def read(file): |
|
if file.endswith('.float3'): return readFloat(file) |
|
elif file.endswith('.flo'): return readFlow(file) |
|
elif file.endswith('.ppm'): return readImage(file) |
|
elif file.endswith('.pgm'): return readImage(file) |
|
elif file.endswith('.png'): return readImage(file) |
|
elif file.endswith('.jpg'): return readImage(file) |
|
elif file.endswith('.pfm'): return readPFM(file)[0] |
|
else: raise Exception('don\'t know how to read %s' % file) |
|
|
|
|
|
def write(file, data): |
|
if file.endswith('.float3'): return writeFloat(file, data) |
|
elif file.endswith('.flo'): return writeFlow(file, data) |
|
elif file.endswith('.ppm'): return writeImage(file, data) |
|
elif file.endswith('.pgm'): return writeImage(file, data) |
|
elif file.endswith('.png'): return writeImage(file, data) |
|
elif file.endswith('.jpg'): return writeImage(file, data) |
|
elif file.endswith('.pfm'): return writePFM(file, data) |
|
else: raise Exception('don\'t know how to write %s' % file) |
|
|
|
|
|
def readPFM(file): |
|
file = open(file, 'rb') |
|
|
|
color = None |
|
width = None |
|
height = None |
|
scale = None |
|
endian = None |
|
|
|
header = file.readline().rstrip() |
|
if header.decode("ascii") == 'PF': |
|
color = True |
|
elif header.decode("ascii") == 'Pf': |
|
color = False |
|
else: |
|
raise Exception('Not a PFM file.') |
|
|
|
dim_match = re.match(r'^(\d+)\s(\d+)\s$', file.readline().decode("ascii")) |
|
if dim_match: |
|
width, height = list(map(int, dim_match.groups())) |
|
else: |
|
raise Exception('Malformed PFM header.') |
|
|
|
scale = float(file.readline().decode("ascii").rstrip()) |
|
if scale < 0: |
|
endian = '<' |
|
scale = -scale |
|
else: |
|
endian = '>' |
|
|
|
data = np.fromfile(file, endian + 'f') |
|
shape = (height, width, 3) if color else (height, width) |
|
|
|
data = np.reshape(data, shape) |
|
data = np.flipud(data) |
|
return data, scale |
|
|
|
|
|
def writePFM(file, image, scale=1): |
|
file = open(file, 'wb') |
|
|
|
color = None |
|
|
|
if image.dtype.name != 'float32': |
|
raise Exception('Image dtype must be float32.') |
|
|
|
image = np.flipud(image) |
|
|
|
if len(image.shape) == 3 and image.shape[2] == 3: |
|
color = True |
|
elif len(image.shape) == 2 or len(image.shape) == 3 and image.shape[2] == 1: |
|
color = False |
|
else: |
|
raise Exception('Image must have H x W x 3, H x W x 1 or H x W dimensions.') |
|
|
|
file.write('PF\n' if color else 'Pf\n'.encode()) |
|
file.write('%d %d\n'.encode() % (image.shape[1], image.shape[0])) |
|
|
|
endian = image.dtype.byteorder |
|
|
|
if endian == '<' or endian == '=' and sys.byteorder == 'little': |
|
scale = -scale |
|
|
|
file.write('%f\n'.encode() % scale) |
|
|
|
image.tofile(file) |
|
|
|
|
|
def readFlow(name): |
|
if name.endswith('.pfm') or name.endswith('.PFM'): |
|
return readPFM(name)[0][:,:,0:2] |
|
|
|
f = open(name, 'rb') |
|
|
|
header = f.read(4) |
|
if header.decode("utf-8") != 'PIEH': |
|
raise Exception('Flow file header does not contain PIEH') |
|
|
|
width = np.fromfile(f, np.int32, 1).squeeze() |
|
height = np.fromfile(f, np.int32, 1).squeeze() |
|
|
|
flow = np.fromfile(f, np.float32, width * height * 2).reshape((height, width, 2)) |
|
|
|
return flow.astype(np.float32) |
|
|
|
|
|
def readImage(name): |
|
if name.endswith('.pfm') or name.endswith('.PFM'): |
|
data = readPFM(name)[0] |
|
if len(data.shape)==3: |
|
return data[:,:,0:3] |
|
else: |
|
return data |
|
return imread(name) |
|
|
|
|
|
def writeImage(name, data): |
|
if name.endswith('.pfm') or name.endswith('.PFM'): |
|
return writePFM(name, data, 1) |
|
return imwrite(name, data) |
|
|
|
|
|
def writeFlow(name, flow): |
|
f = open(name, 'wb') |
|
f.write('PIEH'.encode('utf-8')) |
|
np.array([flow.shape[1], flow.shape[0]], dtype=np.int32).tofile(f) |
|
flow = flow.astype(np.float32) |
|
flow.tofile(f) |
|
|
|
|
|
def readFloat(name): |
|
f = open(name, 'rb') |
|
|
|
if(f.readline().decode("utf-8")) != 'float\n': |
|
raise Exception('float file %s did not contain <float> keyword' % name) |
|
|
|
dim = int(f.readline()) |
|
|
|
dims = [] |
|
count = 1 |
|
for i in range(0, dim): |
|
d = int(f.readline()) |
|
dims.append(d) |
|
count *= d |
|
|
|
dims = list(reversed(dims)) |
|
|
|
data = np.fromfile(f, np.float32, count).reshape(dims) |
|
if dim > 2: |
|
data = np.transpose(data, (2, 1, 0)) |
|
data = np.transpose(data, (1, 0, 2)) |
|
|
|
return data |
|
|
|
|
|
def writeFloat(name, data): |
|
f = open(name, 'wb') |
|
|
|
dim=len(data.shape) |
|
if dim>3: |
|
raise Exception('bad float file dimension: %d' % dim) |
|
|
|
f.write(('float\n').encode('ascii')) |
|
f.write(('%d\n' % dim).encode('ascii')) |
|
|
|
if dim == 1: |
|
f.write(('%d\n' % data.shape[0]).encode('ascii')) |
|
else: |
|
f.write(('%d\n' % data.shape[1]).encode('ascii')) |
|
f.write(('%d\n' % data.shape[0]).encode('ascii')) |
|
for i in range(2, dim): |
|
f.write(('%d\n' % data.shape[i]).encode('ascii')) |
|
|
|
data = data.astype(np.float32) |
|
if dim==2: |
|
data.tofile(f) |
|
|
|
else: |
|
np.transpose(data, (2, 0, 1)).tofile(f) |
|
|
|
|
|
def check_dim_and_resize(tensor_list): |
|
shape_list = [] |
|
for t in tensor_list: |
|
shape_list.append(t.shape[2:]) |
|
|
|
if len(set(shape_list)) > 1: |
|
desired_shape = shape_list[0] |
|
print(f'Inconsistent size of input video frames. All frames will be resized to {desired_shape}') |
|
|
|
resize_tensor_list = [] |
|
for t in tensor_list: |
|
resize_tensor_list.append(torch.nn.functional.interpolate(t, size=tuple(desired_shape), mode='bilinear')) |
|
|
|
tensor_list = resize_tensor_list |
|
|
|
return tensor_list |
|
|
|
parser = argparse.ArgumentParser( |
|
prog = 'AMT', |
|
description = 'Flow generation', |
|
) |
|
parser.add_argument('-r', '--root', default='../data/vimeo_triplet') |
|
args = parser.parse_args() |
|
|
|
vimeo90k_dir = args.root |
|
vimeo90k_sequences_dir = osp.join(vimeo90k_dir, 'sequences') |
|
vimeo90k_flow_dir = osp.join(vimeo90k_dir, 'flow') |
|
|
|
def pred_flow(img1, img2): |
|
img1 = torch.from_numpy(img1).float().permute(2, 0, 1) / 255.0 |
|
img2 = torch.from_numpy(img2).float().permute(2, 0, 1) / 255.0 |
|
|
|
flow = estimate(img1, img2) |
|
|
|
flow = flow.permute(1, 2, 0).cpu().numpy() |
|
return flow |
|
|
|
print('Built Flow Path') |
|
if not osp.exists(vimeo90k_flow_dir): |
|
os.makedirs(vimeo90k_flow_dir) |
|
|
|
for sequences_path in sorted(os.listdir(vimeo90k_sequences_dir)): |
|
vimeo90k_sequences_path_dir = osp.join(vimeo90k_sequences_dir, sequences_path) |
|
vimeo90k_flow_path_dir = osp.join(vimeo90k_flow_dir, sequences_path) |
|
if not osp.exists(vimeo90k_flow_path_dir): |
|
os.mkdir(vimeo90k_flow_path_dir) |
|
|
|
for sequences_id in sorted(os.listdir(vimeo90k_sequences_path_dir)): |
|
vimeo90k_flow_id_dir = osp.join(vimeo90k_flow_path_dir, sequences_id) |
|
if not osp.exists(vimeo90k_flow_id_dir): |
|
os.mkdir(vimeo90k_flow_id_dir) |
|
|
|
for sequences_path in sorted(os.listdir(vimeo90k_sequences_dir)): |
|
vimeo90k_sequences_path_dir = os.path.join(vimeo90k_sequences_dir, sequences_path) |
|
vimeo90k_flow_path_dir = os.path.join(vimeo90k_flow_dir, sequences_path) |
|
|
|
for sequences_id in sorted(os.listdir(vimeo90k_sequences_path_dir)): |
|
vimeo90k_sequences_id_dir = os.path.join(vimeo90k_sequences_path_dir, sequences_id) |
|
vimeo90k_flow_id_dir = os.path.join(vimeo90k_flow_path_dir, sequences_id) |
|
|
|
img0_path = vimeo90k_sequences_id_dir + '/im1.png' |
|
imgt_path = vimeo90k_sequences_id_dir + '/im2.png' |
|
img1_path = vimeo90k_sequences_id_dir + '/im3.png' |
|
flow_t0_path = vimeo90k_flow_id_dir + '/flow_t0.flo' |
|
flow_t1_path = vimeo90k_flow_id_dir + '/flow_t1.flo' |
|
|
|
img0 = read(img0_path) |
|
imgt = read(imgt_path) |
|
img1 = read(img1_path) |
|
|
|
flow_t0 = pred_flow(imgt, img0) |
|
flow_t1 = pred_flow(imgt, img1) |
|
|
|
write(flow_t0_path, flow_t0) |
|
write(flow_t1_path, flow_t1) |
|
|
|
print('Written Sequences {}'.format(sequences_path)) |
|
|
|
|
|
|