File size: 43,254 Bytes
8d015d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 |
""" Twins
A PyTorch impl of : `Twins: Revisiting the Design of Spatial Attention in Vision Transformers`
- https://arxiv.org/pdf/2104.13840.pdf
Code/weights from https://github.com/Meituan-AutoML/Twins, original copyright/license info below
"""
# --------------------------------------------------------
# Twins
# Copyright (c) 2021 Meituan
# Licensed under The Apache 2.0 License [see LICENSE for details]
# Written by Xinjie Li, Xiangxiang Chu
# --------------------------------------------------------
import math
from copy import deepcopy
from typing import Optional, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
from functools import partial
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.models.layers import Mlp, DropPath, to_2tuple, trunc_normal_
from timm.models.registry import register_model
from timm.models.vision_transformer import Attention
from .attention import MultiHeadAttention, LinearPositionEmbeddingSine
from .utils import coords_grid, bilinear_sampler, upflow8
def _cfg(url='', **kwargs):
return {
'url': url,
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True,
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
'first_conv': 'patch_embeds.0.proj', 'classifier': 'head',
**kwargs
}
default_cfgs = {
'twins_pcpvt_small': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vt3p-weights/twins_pcpvt_small-e70e7e7a.pth',
),
'twins_pcpvt_base': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vt3p-weights/twins_pcpvt_base-e5ecb09b.pth',
),
'twins_pcpvt_large': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vt3p-weights/twins_pcpvt_large-d273f802.pth',
),
'twins_svt_small': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vt3p-weights/twins_svt_small-42e5f78c.pth',
),
'twins_svt_base': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vt3p-weights/twins_svt_base-c2265010.pth',
),
'twins_svt_large': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vt3p-weights/twins_svt_large-90f6aaa9.pth',
),
}
Size_ = Tuple[int, int]
class GroupAttnRPEContext(nn.Module):
""" Latent cost tokens attend to different group
"""
def __init__(self, dim, num_heads=8, attn_drop=0., proj_drop=0., ws=1, vert_c_dim=0):
super(GroupAttnRPEContext, self).__init__()
assert ws != 1
assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."
assert vert_c_dim > 0, "vert_c_dim should not be 0"
self.dim = dim
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = head_dim ** -0.5
self.vert_c_dim = vert_c_dim
self.context_proj = nn.Linear(256, vert_c_dim)
self.q = nn.Linear(dim + vert_c_dim, dim, bias=True)
self.k = nn.Linear(dim + vert_c_dim, dim, bias=True)
self.v = nn.Linear(dim, dim, bias=True)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.ws = ws
def forward(self, x, size: Size_, context=None):
B, N, C = x.shape
C_qk = C + self.vert_c_dim
H, W = size
batch_num = B // 5
context = context.repeat(B // context.shape[0], 1, 1, 1)
context = context.view(B, -1, H * W).permute(0, 2, 1)
context = self.context_proj(context)
context = context.view(B, H, W, -1)
x = x.view(B, H, W, C)
x_qk = torch.cat([x, context], dim=-1)
pad_l = pad_t = 0
pad_r = (self.ws - W % self.ws) % self.ws
pad_b = (self.ws - H % self.ws) % self.ws
x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
x_qk = F.pad(x_qk, (0, 0, pad_l, pad_r, pad_t, pad_b))
_, Hp, Wp, _ = x.shape
_h, _w = Hp // self.ws, Wp // self.ws
padded_N = Hp * Wp
coords = coords_grid(B, Hp, Wp).to(x.device)
coords = coords.view(B, 2, -1).permute(0, 2, 1)
coords_enc = LinearPositionEmbeddingSine(coords, dim=C_qk)
coords_enc = coords_enc.reshape(B, Hp, Wp, C_qk)
q = self.q(x_qk + coords_enc).reshape(B, _h, self.ws, _w, self.ws, self.num_heads,
C // self.num_heads).transpose(2, 3)
q = q.reshape(B, _h * _w, self.ws * self.ws, self.num_heads, C // self.num_heads).permute(0, 1, 3, 2, 4)
v = self.v(x)
k = self.k(x_qk + coords_enc)
# concate and do shifting operation together
kv = torch.cat([k, v], dim=-1)
kv_up = torch.cat(
[kv[:batch_num, self.ws:Hp, :, :],
kv[:batch_num, Hp - self.ws:Hp, :, :]], dim=1)
kv_down = torch.cat(
[kv[batch_num:batch_num * 2, :self.ws, :, :],
kv[batch_num:batch_num * 2, :Hp - self.ws, :, :]], dim=1)
kv_left = torch.cat(
[kv[batch_num * 2:batch_num * 3, :, self.ws:Wp, :],
kv[batch_num * 2:batch_num * 3, :, Wp - self.ws:Wp, :]], dim=2)
kv_right = torch.cat(
[kv[batch_num * 3:batch_num * 4, :, :self.ws, :],
kv[batch_num * 3:batch_num * 4, :, :Wp - self.ws, :]], dim=2)
kv_center = kv[batch_num * 4:batch_num * 5, :, :, :]
kv_shifted = torch.cat([kv_up, kv_down, kv_left, kv_right, kv_center], dim=0)
k, v = torch.split(kv_shifted, [self.dim, self.dim], dim=-1)
k = k.reshape(B, _h, self.ws, _w, self.ws, self.num_heads, C // self.num_heads).transpose(2, 3)
k = k.reshape(B, _h * _w, self.ws * self.ws, self.num_heads, C // self.num_heads).permute(0, 1, 3, 2, 4)
v = v.reshape(B, _h, self.ws, _w, self.ws, self.num_heads, C // self.num_heads).transpose(2, 3)
v = v.reshape(B, _h * _w, self.ws * self.ws, self.num_heads, C // self.num_heads).permute(0, 1, 3, 2, 4)
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
attn = (attn @ v).transpose(2, 3).reshape(B, _h, _w, self.ws, self.ws, C)
x = attn.transpose(2, 3).reshape(B, _h * self.ws, _w * self.ws, C)
if pad_r > 0 or pad_b > 0:
x = x[:, :H, :W, :].contiguous()
x = x.reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class GroupAttnRPE(nn.Module):
""" Latent cost tokens attend to different group
"""
def __init__(self, dim, num_heads=8, attn_drop=0., proj_drop=0., ws=1):
super(GroupAttnRPE, self).__init__()
assert ws != 1
assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."
self.dim = dim
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = head_dim ** -0.5
self.q = nn.Linear(dim, dim, bias=True)
self.k = nn.Linear(dim, dim, bias=True)
self.v = nn.Linear(dim, dim, bias=True)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.ws = ws
def forward(self, x, size: Size_, context=None):
B, N, C = x.shape
H, W = size
batch_num = B // 5
x = x.view(B, H, W, C)
pad_l = pad_t = 0
pad_r = (self.ws - W % self.ws) % self.ws
pad_b = (self.ws - H % self.ws) % self.ws
x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
_, Hp, Wp, _ = x.shape
_h, _w = Hp // self.ws, Wp // self.ws
padded_N = Hp * Wp
coords = coords_grid(B, Hp, Wp).to(x.device)
coords = coords.view(B, 2, -1).permute(0, 2, 1)
coords_enc = LinearPositionEmbeddingSine(coords, dim=C)
coords_enc = coords_enc.reshape(B, Hp, Wp, C)
q = self.q(x + coords_enc).reshape(B, _h, self.ws, _w, self.ws, self.num_heads, C // self.num_heads).transpose(
2, 3)
q = q.reshape(B, _h * _w, self.ws * self.ws, self.num_heads, C // self.num_heads).permute(0, 1, 3, 2, 4)
v = self.v(x)
k = self.k(x + coords_enc)
# concate and do shifting operation together
kv = torch.cat([k, v], dim=-1)
kv_up = torch.cat([kv[:batch_num, self.ws:Hp, :, :], kv[:batch_num, Hp - self.ws:Hp, :, :]], dim=1)
kv_down = torch.cat(
[kv[batch_num:batch_num * 2, :self.ws, :, :], kv[batch_num:batch_num * 2, :Hp - self.ws, :, :]], dim=1)
kv_left = torch.cat(
[kv[batch_num * 2:batch_num * 3, :, self.ws:Wp, :], kv[batch_num * 2:batch_num * 3, :, Wp - self.ws:Wp, :]],
dim=2)
kv_right = torch.cat(
[kv[batch_num * 3:batch_num * 4, :, :self.ws, :], kv[batch_num * 3:batch_num * 4, :, :Wp - self.ws, :]],
dim=2)
kv_center = kv[batch_num * 4:batch_num * 5, :, :, :]
kv_shifted = torch.cat([kv_up, kv_down, kv_left, kv_right, kv_center], dim=0)
k, v = torch.split(kv_shifted, [self.dim, self.dim], dim=-1)
k = k.reshape(B, _h, self.ws, _w, self.ws, self.num_heads, C // self.num_heads).transpose(2, 3)
k = k.reshape(B, _h * _w, self.ws * self.ws, self.num_heads, C // self.num_heads).permute(0, 1, 3, 2, 4)
v = v.reshape(B, _h, self.ws, _w, self.ws, self.num_heads, C // self.num_heads).transpose(2, 3)
v = v.reshape(B, _h * _w, self.ws * self.ws, self.num_heads, C // self.num_heads).permute(0, 1, 3, 2, 4)
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
attn = (attn @ v).transpose(2, 3).reshape(B, _h, _w, self.ws, self.ws, C)
x = attn.transpose(2, 3).reshape(B, _h * self.ws, _w * self.ws, C)
if pad_r > 0 or pad_b > 0:
x = x[:, :H, :W, :].contiguous()
x = x.reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class LocallyGroupedAttnRPEContext(nn.Module):
""" LSA: self attention within a group
"""
def __init__(self, dim, num_heads=8, attn_drop=0., proj_drop=0., ws=1, vert_c_dim=0):
assert ws != 1
super(LocallyGroupedAttnRPEContext, self).__init__()
assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."
self.dim = dim
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = head_dim ** -0.5
self.vert_c_dim = vert_c_dim
self.context_proj = nn.Linear(256, vert_c_dim)
# context are not added to value
self.q = nn.Linear(dim + vert_c_dim, dim, bias=True)
self.k = nn.Linear(dim + vert_c_dim, dim, bias=True)
self.v = nn.Linear(dim, dim, bias=True)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.ws = ws
def forward(self, x, size: Size_, context=None):
# There are two implementations for this function, zero padding or mask. We don't observe obvious difference for
# both. You can choose any one, we recommend forward_padding because it's neat. However,
# the masking implementation is more reasonable and accurate.
B, N, C = x.shape
H, W = size
C_qk = C + self.vert_c_dim
context = context.repeat(B // context.shape[0], 1, 1, 1)
context = context.view(B, -1, H * W).permute(0, 2, 1)
context = self.context_proj(context)
context = context.view(B, H, W, -1)
x = x.view(B, H, W, C)
x_qk = torch.cat([x, context], dim=-1)
pad_l = pad_t = 0
pad_r = (self.ws - W % self.ws) % self.ws
pad_b = (self.ws - H % self.ws) % self.ws
x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
x_qk = F.pad(x_qk, (0, 0, pad_l, pad_r, pad_t, pad_b))
_, Hp, Wp, _ = x.shape
_h, _w = Hp // self.ws, Wp // self.ws
x = x.reshape(B, _h, self.ws, _w, self.ws, C).transpose(2, 3)
x_qk = x_qk.reshape(B, _h, self.ws, _w, self.ws, C_qk).transpose(2, 3)
v = self.v(x).reshape(
B, _h * _w, self.ws * self.ws, 1, self.num_heads, C // self.num_heads).permute(3, 0, 1, 4, 2, 5)[0]
coords = coords_grid(B, self.ws, self.ws).to(x.device)
coords = coords.view(B, 2, -1).permute(0, 2, 1)
coords_enc = LinearPositionEmbeddingSine(coords, dim=C_qk).view(B, self.ws, self.ws, C_qk)
# coords_enc: B, ws, ws, C
# x: B, _h, _w, self.ws, self.ws, C
x_qk = x_qk + coords_enc[:, None, None, :, :, :]
q = self.q(x_qk).reshape(
B, _h * _w, self.ws * self.ws, 1, self.num_heads, C // self.num_heads).permute(3, 0, 1, 4, 2, 5)[0]
k = self.k(x_qk).reshape(
B, _h * _w, self.ws * self.ws, 1, self.num_heads, C // self.num_heads).permute(3, 0, 1, 4, 2, 5)[0]
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
attn = (attn @ v).transpose(2, 3).reshape(B, _h, _w, self.ws, self.ws, C)
x = attn.transpose(2, 3).reshape(B, _h * self.ws, _w * self.ws, C)
if pad_r > 0 or pad_b > 0:
x = x[:, :H, :W, :].contiguous()
x = x.reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class GlobalSubSampleAttnRPEContext(nn.Module):
""" GSA: using a key to summarize the information for a group to be efficient.
"""
def __init__(self, dim, num_heads=8, attn_drop=0., proj_drop=0., sr_ratio=1, vert_c_dim=0):
super().__init__()
assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."
self.dim = dim
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = head_dim ** -0.5
self.vert_c_dim = vert_c_dim
self.context_proj = nn.Linear(256, vert_c_dim)
self.q = nn.Linear(dim + vert_c_dim, dim, bias=True)
self.k = nn.Linear(dim, dim, bias=True)
self.v = nn.Linear(dim, dim, bias=True)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.sr_ratio = sr_ratio
if sr_ratio > 1:
self.sr_key = nn.Conv2d(dim + vert_c_dim, dim, kernel_size=sr_ratio, stride=sr_ratio)
self.sr_value = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio)
self.norm = nn.LayerNorm(dim)
else:
self.sr = None
self.norm = None
def forward(self, x, size: Size_, context=None):
B, N, C = x.shape
C_qk = C + self.vert_c_dim
H, W = size
context = context.repeat(B // context.shape[0], 1, 1, 1)
context = context.view(B, -1, H * W).permute(0, 2, 1)
context = self.context_proj(context)
context = context.view(B, H, W, -1)
x = x.view(B, H, W, C)
x_qk = torch.cat([x, context], dim=-1)
pad_l = pad_t = 0
pad_r = (self.sr_ratio - W % self.sr_ratio) % self.sr_ratio
pad_b = (self.sr_ratio - H % self.sr_ratio) % self.sr_ratio
x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
x_qk = F.pad(x_qk, (0, 0, pad_l, pad_r, pad_t, pad_b))
_, Hp, Wp, _ = x.shape
padded_size = (Hp, Wp)
padded_N = Hp * Wp
x = x.view(B, -1, C)
x_qk = x_qk.view(B, -1, C_qk)
coords = coords_grid(B, *padded_size).to(x.device)
coords = coords.view(B, 2, -1).permute(0, 2, 1)
coords_enc = LinearPositionEmbeddingSine(coords, dim=C_qk)
# coords_enc: B, Hp*Wp, C
# x: B, Hp*Wp, C
q = self.q(x_qk + coords_enc).reshape(B, padded_N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
if self.sr_key is not None:
x = x.permute(0, 2, 1).reshape(B, C, *padded_size)
x_qk = x_qk.permute(0, 2, 1).reshape(B, C_qk, *padded_size)
x = self.sr_value(x).reshape(B, C, -1).permute(0, 2, 1)
x_qk = self.sr_key(x_qk).reshape(B, C, -1).permute(0, 2, 1)
x = self.norm(x)
x_qk = self.norm(x_qk)
coords = coords_grid(B, padded_size[0] // self.sr_ratio, padded_size[1] // self.sr_ratio).to(x.device)
coords = coords.view(B, 2, -1).permute(0, 2, 1) * self.sr_ratio
# align the coordinate of local and global
coords_enc = LinearPositionEmbeddingSine(coords, dim=C)
k = self.k(x_qk + coords_enc).reshape(B, (padded_size[0] // self.sr_ratio) * (padded_size[1] // self.sr_ratio),
self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
v = self.v(x).reshape(B, (padded_size[0] // self.sr_ratio) * (padded_size[1] // self.sr_ratio), self.num_heads,
C // self.num_heads).permute(0, 2, 1, 3)
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, Hp, Wp, C)
if pad_r > 0 or pad_b > 0:
x = x[:, :H, :W, :].contiguous()
x = x.reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class LocallyGroupedAttnRPE(nn.Module):
""" LSA: self attention within a group
"""
def __init__(self, dim, num_heads=8, attn_drop=0., proj_drop=0., ws=1):
assert ws != 1
super(LocallyGroupedAttnRPE, self).__init__()
assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."
self.dim = dim
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = head_dim ** -0.5
self.q = nn.Linear(dim, dim, bias=True)
self.k = nn.Linear(dim, dim, bias=True)
self.v = nn.Linear(dim, dim, bias=True)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.ws = ws
def forward(self, x, size: Size_, context=None):
# There are two implementations for this function, zero padding or mask. We don't observe obvious difference for
# both. You can choose any one, we recommend forward_padding because it's neat. However,
# the masking implementation is more reasonable and accurate.
B, N, C = x.shape
H, W = size
x = x.view(B, H, W, C)
pad_l = pad_t = 0
pad_r = (self.ws - W % self.ws) % self.ws
pad_b = (self.ws - H % self.ws) % self.ws
x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
_, Hp, Wp, _ = x.shape
_h, _w = Hp // self.ws, Wp // self.ws
x = x.reshape(B, _h, self.ws, _w, self.ws, C).transpose(2, 3)
v = self.v(x).reshape(
B, _h * _w, self.ws * self.ws, 1, self.num_heads, C // self.num_heads).permute(3, 0, 1, 4, 2, 5)[0]
coords = coords_grid(B, self.ws, self.ws).to(x.device)
coords = coords.view(B, 2, -1).permute(0, 2, 1)
coords_enc = LinearPositionEmbeddingSine(coords, dim=C).view(B, self.ws, self.ws, C)
# coords_enc: B, ws, ws, C
# x: B, _h, _w, self.ws, self.ws, C
x = x + coords_enc[:, None, None, :, :, :]
q = self.q(x).reshape(
B, _h * _w, self.ws * self.ws, 1, self.num_heads, C // self.num_heads).permute(3, 0, 1, 4, 2, 5)[0]
k = self.k(x).reshape(
B, _h * _w, self.ws * self.ws, 1, self.num_heads, C // self.num_heads).permute(3, 0, 1, 4, 2, 5)[0]
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
attn = (attn @ v).transpose(2, 3).reshape(B, _h, _w, self.ws, self.ws, C)
x = attn.transpose(2, 3).reshape(B, _h * self.ws, _w * self.ws, C)
if pad_r > 0 or pad_b > 0:
x = x[:, :H, :W, :].contiguous()
x = x.reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class GlobalSubSampleAttnRPE(nn.Module):
""" GSA: using a key to summarize the information for a group to be efficient.
"""
def __init__(self, dim, num_heads=8, attn_drop=0., proj_drop=0., sr_ratio=1):
super().__init__()
assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."
self.dim = dim
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = head_dim ** -0.5
self.q = nn.Linear(dim, dim, bias=True)
self.k = nn.Linear(dim, dim, bias=True)
self.v = nn.Linear(dim, dim, bias=True)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.sr_ratio = sr_ratio
if sr_ratio > 1:
self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio)
self.norm = nn.LayerNorm(dim)
else:
self.sr = None
self.norm = None
def forward(self, x, size: Size_, context=None):
B, N, C = x.shape
H, W = size
x = x.view(B, H, W, C)
pad_l = pad_t = 0
pad_r = (self.sr_ratio - W % self.sr_ratio) % self.sr_ratio
pad_b = (self.sr_ratio - H % self.sr_ratio) % self.sr_ratio
x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
_, Hp, Wp, _ = x.shape
padded_size = (Hp, Wp)
padded_N = Hp * Wp
x = x.view(B, -1, C)
coords = coords_grid(B, *padded_size).to(x.device)
coords = coords.view(B, 2, -1).permute(0, 2, 1)
coords_enc = LinearPositionEmbeddingSine(coords, dim=C)
# coords_enc: B, Hp*Wp, C
# x: B, Hp*Wp, C
q = self.q(x + coords_enc).reshape(B, padded_N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
if self.sr is not None:
x = x.permute(0, 2, 1).reshape(B, C, *padded_size)
x = self.sr(x).reshape(B, C, -1).permute(0, 2, 1)
x = self.norm(x)
coords = coords_grid(B, padded_size[0] // self.sr_ratio, padded_size[1] // self.sr_ratio).to(x.device)
coords = coords.view(B, 2, -1).permute(0, 2, 1) * self.sr_ratio
# align the coordinate of local and global
coords_enc = LinearPositionEmbeddingSine(coords, dim=C)
k = self.k(x + coords_enc).reshape(B, (padded_size[0] // self.sr_ratio) * (padded_size[1] // self.sr_ratio),
self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
v = self.v(x).reshape(B, (padded_size[0] // self.sr_ratio) * (padded_size[1] // self.sr_ratio), self.num_heads,
C // self.num_heads).permute(0, 2, 1, 3)
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, Hp, Wp, C)
if pad_r > 0 or pad_b > 0:
x = x[:, :H, :W, :].contiguous()
x = x.reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class CrossGlobalSubSampleAttnRPE(nn.Module):
""" GSA: using a key to summarize the information for a group to be efficient.
"""
def __init__(self, dim, num_heads=8, attn_drop=0., proj_drop=0., sr_ratio=1):
super().__init__()
assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."
self.dim = dim
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = head_dim ** -0.5
self.q = nn.Linear(dim, dim, bias=True)
self.k = nn.Linear(dim, dim, bias=True)
self.v = nn.Linear(dim, dim, bias=True)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.sr_ratio = sr_ratio
if sr_ratio > 1:
self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio)
self.norm = nn.LayerNorm(dim)
else:
self.sr = None
self.norm = None
def forward(self, x, tgt, size: Size_):
B, N, C = x.shape
coords = coords_grid(B, *size).to(x.device)
coords = coords.view(B, 2, -1).permute(0, 2, 1)
coords_enc = LinearPositionEmbeddingSine(coords, dim=C)
# coords_enc: B, H*W, C
# x: B, H*W, C
q = self.q(x + coords_enc).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
if self.sr is not None:
tgt = tgt.permute(0, 2, 1).reshape(B, C, *size)
tgt = self.sr(tgt).reshape(B, C, -1).permute(0, 2, 1)
tgt = self.norm(tgt)
coords = coords_grid(B, size[0] // self.sr_ratio, size[1] // self.sr_ratio).to(x.device)
coords = coords.view(B, 2, -1).permute(0, 2, 1) * self.sr_ratio
# align the coordinate of local and global
coords_enc = LinearPositionEmbeddingSine(coords, dim=C)
k = self.k(tgt + coords_enc).reshape(B, (size[0] // self.sr_ratio) * (size[1] // self.sr_ratio), self.num_heads,
C // self.num_heads).permute(0, 2, 1, 3)
v = self.v(tgt).reshape(B, (size[0] // self.sr_ratio) * (size[1] // self.sr_ratio), self.num_heads,
C // self.num_heads).permute(0, 2, 1, 3)
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class LocallyGroupedAttn(nn.Module):
""" LSA: self attention within a group
"""
def __init__(self, dim, num_heads=8, attn_drop=0., proj_drop=0., ws=1):
assert ws != 1
super(LocallyGroupedAttn, self).__init__()
assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."
self.dim = dim
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=True)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.ws = ws
def forward(self, x, size: Size_):
# There are two implementations for this function, zero padding or mask. We don't observe obvious difference for
# both. You can choose any one, we recommend forward_padding because it's neat. However,
# the masking implementation is more reasonable and accurate.
B, N, C = x.shape
H, W = size
x = x.view(B, H, W, C)
pad_l = pad_t = 0
pad_r = (self.ws - W % self.ws) % self.ws
pad_b = (self.ws - H % self.ws) % self.ws
x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
_, Hp, Wp, _ = x.shape
_h, _w = Hp // self.ws, Wp // self.ws
x = x.reshape(B, _h, self.ws, _w, self.ws, C).transpose(2, 3)
qkv = self.qkv(x).reshape(
B, _h * _w, self.ws * self.ws, 3, self.num_heads, C // self.num_heads).permute(3, 0, 1, 4, 2, 5)
q, k, v = qkv[0], qkv[1], qkv[2]
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
attn = (attn @ v).transpose(2, 3).reshape(B, _h, _w, self.ws, self.ws, C)
x = attn.transpose(2, 3).reshape(B, _h * self.ws, _w * self.ws, C)
if pad_r > 0 or pad_b > 0:
x = x[:, :H, :W, :].contiguous()
x = x.reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class GlobalSubSampleAttn(nn.Module):
""" GSA: using a key to summarize the information for a group to be efficient.
"""
def __init__(self, dim, num_heads=8, attn_drop=0., proj_drop=0., sr_ratio=1):
super().__init__()
assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."
self.dim = dim
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = head_dim ** -0.5
self.q = nn.Linear(dim, dim, bias=True)
self.kv = nn.Linear(dim, dim * 2, bias=True)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.sr_ratio = sr_ratio
if sr_ratio > 1:
self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio)
self.norm = nn.LayerNorm(dim)
else:
self.sr = None
self.norm = None
def forward(self, x, size: Size_):
B, N, C = x.shape
q = self.q(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
if self.sr is not None:
x = x.permute(0, 2, 1).reshape(B, C, *size)
x = self.sr(x).reshape(B, C, -1).permute(0, 2, 1)
x = self.norm(x)
kv = self.kv(x).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
k, v = kv[0], kv[1]
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class CrossGlobalSubSampleAttn(nn.Module):
""" GSA: using a key to summarize the information for a group to be efficient.
"""
def __init__(self, dim, num_heads=8, attn_drop=0., proj_drop=0., sr_ratio=1):
super().__init__()
assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."
self.dim = dim
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = head_dim ** -0.5
self.q = nn.Linear(dim, dim, bias=True)
self.kv = nn.Linear(dim, dim * 2, bias=True)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.sr_ratio = sr_ratio
if sr_ratio > 1:
self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio)
self.norm = nn.LayerNorm(dim)
else:
self.sr = None
self.norm = None
def forward(self, x, tgt, size: Size_):
B, N, C = x.shape
q = self.q(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
if self.sr is not None:
tgt = tgt.permute(0, 2, 1).reshape(B, C, *size)
tgt = self.sr(tgt).reshape(B, C, -1).permute(0, 2, 1)
tgt = self.norm(tgt)
kv = self.kv(tgt).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
k, v = kv[0], kv[1]
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class CrossBlock(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4., drop=0., attn_drop=0., drop_path=0.,
act_layer=nn.GELU, norm_layer=nn.LayerNorm, sr_ratio=1, ws=None, with_rpe=True):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = CrossGlobalSubSampleAttnRPE(dim, num_heads, attn_drop, drop, sr_ratio)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
def forward(self, src, tgt, size: Size_):
src_shortcut, tgt_shortcut = src, tgt
src, tgt = self.norm1(src), self.norm1(tgt)
src = src_shortcut + self.drop_path(self.attn(src, tgt, size))
tgt = tgt_shortcut + self.drop_path(self.attn(tgt, src, size))
src = src + self.drop_path(self.mlp(self.norm2(src)))
tgt = tgt + self.drop_path(self.mlp(self.norm2(tgt)))
return src, tgt
class Block(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4., drop=0., attn_drop=0., drop_path=0.,
act_layer=nn.GELU, norm_layer=nn.LayerNorm, sr_ratio=1, ws=None, with_rpe=False, vert_c_dim=0):
super().__init__()
self.norm1 = norm_layer(dim)
if ws == 1:
if with_rpe:
if vert_c_dim > 0:
self.attn = GlobalSubSampleAttnRPEContext(dim, num_heads, attn_drop, drop, sr_ratio, vert_c_dim)
else:
self.attn = GlobalSubSampleAttnRPE(dim, num_heads, attn_drop, drop, sr_ratio)
else:
self.attn = GlobalSubSampleAttn(dim, num_heads, attn_drop, drop, sr_ratio)
else:
if with_rpe:
if vert_c_dim > 0:
self.attn = LocallyGroupedAttnRPEContext(dim, num_heads, attn_drop, drop, ws, vert_c_dim)
else:
self.attn = LocallyGroupedAttnRPE(dim, num_heads, attn_drop, drop, ws)
else:
self.attn = LocallyGroupedAttn(dim, num_heads, attn_drop, drop, ws)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
def forward(self, x, size: Size_, context=None):
x = x + self.drop_path(self.attn(self.norm1(x), size, context))
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
class PosConv(nn.Module):
# PEG from https://arxiv.org/abs/2102.10882
def __init__(self, in_chans, embed_dim=768, stride=1):
super(PosConv, self).__init__()
self.proj = nn.Sequential(nn.Conv2d(in_chans, embed_dim, 3, stride, 1, bias=True, groups=embed_dim), )
self.stride = stride
def forward(self, x, size: Size_):
B, N, C = x.shape
cnn_feat_token = x.transpose(1, 2).view(B, C, *size)
x = self.proj(cnn_feat_token)
if self.stride == 1:
x += cnn_feat_token
x = x.flatten(2).transpose(1, 2)
return x
def no_weight_decay(self):
return ['proj.%d.weight' % i for i in range(4)]
class PatchEmbed(nn.Module):
""" Image to Patch Embedding
"""
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
self.img_size = img_size
self.patch_size = patch_size
assert img_size[0] % patch_size[0] == 0 and img_size[1] % patch_size[1] == 0, \
f"img_size {img_size} should be divided by patch_size {patch_size}."
self.H, self.W = img_size[0] // patch_size[0], img_size[1] // patch_size[1]
self.num_patches = self.H * self.W
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
self.norm = nn.LayerNorm(embed_dim)
def forward(self, x) -> Tuple[torch.Tensor, Size_]:
B, C, H, W = x.shape
x = self.proj(x).flatten(2).transpose(1, 2)
x = self.norm(x)
out_size = (H // self.patch_size[0], W // self.patch_size[1])
return x, out_size
class Twins(nn.Module):
""" Twins Vision Transfomer (Revisiting Spatial Attention)
Adapted from PVT (PyramidVisionTransformer) class at https://github.com/whai362/PVT.git
"""
def __init__(
self, img_size=224, patch_size=4, in_chans=3, num_classes=1000, embed_dims=(64, 128, 256, 512),
num_heads=(1, 2, 4, 8), mlp_ratios=(4, 4, 4, 4), drop_rate=0., attn_drop_rate=0., drop_path_rate=0.,
norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=(3, 4, 6, 3), sr_ratios=(8, 4, 2, 1), wss=None,
block_cls=Block, init_weight=True):
super().__init__()
self.num_classes = num_classes
self.depths = depths
self.embed_dims = embed_dims
self.num_features = embed_dims[-1]
img_size = to_2tuple(img_size)
prev_chs = in_chans
self.patch_embeds = nn.ModuleList()
self.pos_drops = nn.ModuleList()
for i in range(len(depths)):
self.patch_embeds.append(PatchEmbed(img_size, patch_size, prev_chs, embed_dims[i]))
self.pos_drops.append(nn.Dropout(p=drop_rate))
prev_chs = embed_dims[i]
img_size = tuple(t // patch_size for t in img_size)
patch_size = 2
self.blocks = nn.ModuleList()
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
cur = 0
for k in range(len(depths)):
_block = nn.ModuleList([block_cls(
dim=embed_dims[k], num_heads=num_heads[k], mlp_ratio=mlp_ratios[k], drop=drop_rate,
attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer, sr_ratio=sr_ratios[k],
ws=1 if wss is None or i % 2 == 1 else wss[k]) for i in range(depths[k])])
self.blocks.append(_block)
cur += depths[k]
self.pos_block = nn.ModuleList([PosConv(embed_dim, embed_dim) for embed_dim in embed_dims])
self.norm = norm_layer(self.num_features)
# classification head
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
# init weights
if init_weight:
self.apply(self._init_weights)
@torch.jit.ignore
def no_weight_decay(self):
return set(['pos_block.' + n for n, p in self.pos_block.named_parameters()])
def get_classifier(self):
return self.head
def reset_classifier(self, num_classes, global_pool=''):
self.num_classes = num_classes
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
elif isinstance(m, nn.Conv2d):
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
fan_out //= m.groups
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1.0)
m.bias.data.zero_()
def forward_features(self, x):
B = x.shape[0]
for i, (embed, drop, blocks, pos_blk) in enumerate(
zip(self.patch_embeds, self.pos_drops, self.blocks, self.pos_block)):
x, size = embed(x)
x = drop(x)
for j, blk in enumerate(blocks):
x = blk(x, size)
if j == 0:
x = pos_blk(x, size) # PEG here
if i < len(self.depths) - 1:
x = x.reshape(B, *size, -1).permute(0, 3, 1, 2).contiguous()
x = self.norm(x)
return x.mean(dim=1) # GAP here
def forward(self, x):
x = self.forward_features(x)
x = self.head(x)
return x
# def _create_twins(variant, pretrained=False, **kwargs):
# if kwargs.get('features_only', None):
# raise RuntimeError('features_only not implemented for Vision Transformer models.')
# model = build_model_with_cfg(
# Twins, variant, pretrained,
# default_cfg=default_cfgs[variant],
# **kwargs)
# return model
# @register_model
# def twins_pcpvt_small(pretrained=False, **kwargs):
# model_kwargs = dict(
# patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
# depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1], **kwargs)
# return _create_twins('twins_pcpvt_small', pretrained=pretrained, **model_kwargs)
# @register_model
# def twins_pcpvt_base(pretrained=False, **kwargs):
# model_kwargs = dict(
# patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
# depths=[3, 4, 18, 3], sr_ratios=[8, 4, 2, 1], **kwargs)
# return _create_twins('twins_pcpvt_base', pretrained=pretrained, **model_kwargs)
# @register_model
# def twins_pcpvt_large(pretrained=False, **kwargs):
# model_kwargs = dict(
# patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
# depths=[3, 8, 27, 3], sr_ratios=[8, 4, 2, 1], **kwargs)
# return _create_twins('twins_pcpvt_large', pretrained=pretrained, **model_kwargs)
# @register_model
# def twins_svt_small(pretrained=False, **kwargs):
# model_kwargs = dict(
# patch_size=4, embed_dims=[64, 128, 256, 512], num_heads=[2, 4, 8, 16], mlp_ratios=[4, 4, 4, 4],
# depths=[2, 2, 10, 4], wss=[7, 7, 7, 7], sr_ratios=[8, 4, 2, 1], **kwargs)
# return _create_twins('twins_svt_small', pretrained=pretrained, **model_kwargs)
# @register_model
# def twins_svt_base(pretrained=False, **kwargs):
# model_kwargs = dict(
# patch_size=4, embed_dims=[96, 192, 384, 768], num_heads=[3, 6, 12, 24], mlp_ratios=[4, 4, 4, 4],
# depths=[2, 2, 18, 2], wss=[7, 7, 7, 7], sr_ratios=[8, 4, 2, 1], **kwargs)
# return _create_twins('twins_svt_base', pretrained=pretrained, **model_kwargs)
# @register_model
# def twins_svt_large(pretrained=False, **kwargs):
# model_kwargs = dict(
# patch_size=4, embed_dims=[128, 256, 512, 1024], num_heads=[4, 8, 16, 32], mlp_ratios=[4, 4, 4, 4],
# depths=[2, 2, 18, 2], wss=[7, 7, 7, 7], sr_ratios=[8, 4, 2, 1], **kwargs)
# return _create_twins('twins_svt_large', pretrained=pretrained, **model_kwargs)
# @register_model
# def twins_svt_large_context(pretrained=False, **kwargs):
# model_kwargs = dict(
# patch_size=4, embed_dims=[128, 256, 512, 1024], num_heads=[4, 8, 16, 32], mlp_ratios=[4, 4, 4, 4],
# depths=[2, 2, 18, 2], wss=[7, 7, 7, 7], sr_ratios=[8, 4, 2, 1], in_chans=6, init_weight=False, **kwargs)
# return _create_twins('twins_svt_large', pretrained=pretrained, **model_kwargs)
# # def twins_svt_large_context(pretrained=False, **kwargs):
# # model_kwargs = dict(
# # patch_size=4, embed_dims=[128, 256], num_heads=[4, 8], mlp_ratios=[4, 4],
# # depths=[2, 2], wss=[7, 7], sr_ratios=[8, 4], in_chans=6, init_weight=False, **kwargs)
# # return _create_twins('twins_svt_large', pretrained=pretrained, **model_kwargs)
|