File size: 43,254 Bytes
8d015d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
""" Twins
A PyTorch impl of : `Twins: Revisiting the Design of Spatial Attention in Vision Transformers`
    - https://arxiv.org/pdf/2104.13840.pdf
Code/weights from https://github.com/Meituan-AutoML/Twins, original copyright/license info below
"""
# --------------------------------------------------------
# Twins
# Copyright (c) 2021 Meituan
# Licensed under The Apache 2.0 License [see LICENSE for details]
# Written by Xinjie Li, Xiangxiang Chu
# --------------------------------------------------------
import math
from copy import deepcopy
from typing import Optional, Tuple

import torch
import torch.nn as nn
import torch.nn.functional as F
from functools import partial

from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.models.layers import Mlp, DropPath, to_2tuple, trunc_normal_
from timm.models.registry import register_model
from timm.models.vision_transformer import Attention
from .attention import MultiHeadAttention, LinearPositionEmbeddingSine
from .utils import coords_grid, bilinear_sampler, upflow8


def _cfg(url='', **kwargs):
    return {
        'url': url,
        'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
        'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True,
        'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
        'first_conv': 'patch_embeds.0.proj', 'classifier': 'head',
        **kwargs
    }


default_cfgs = {
    'twins_pcpvt_small': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vt3p-weights/twins_pcpvt_small-e70e7e7a.pth',
    ),
    'twins_pcpvt_base': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vt3p-weights/twins_pcpvt_base-e5ecb09b.pth',
    ),
    'twins_pcpvt_large': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vt3p-weights/twins_pcpvt_large-d273f802.pth',
    ),
    'twins_svt_small': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vt3p-weights/twins_svt_small-42e5f78c.pth',
    ),
    'twins_svt_base': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vt3p-weights/twins_svt_base-c2265010.pth',
    ),
    'twins_svt_large': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vt3p-weights/twins_svt_large-90f6aaa9.pth',
    ),
}

Size_ = Tuple[int, int]


class GroupAttnRPEContext(nn.Module):
    """ Latent cost tokens attend to different group
    """

    def __init__(self, dim, num_heads=8, attn_drop=0., proj_drop=0., ws=1, vert_c_dim=0):
        super(GroupAttnRPEContext, self).__init__()
        assert ws != 1
        assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."
        assert vert_c_dim > 0, "vert_c_dim should not be 0"

        self.dim = dim
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = head_dim ** -0.5
        self.vert_c_dim = vert_c_dim

        self.context_proj = nn.Linear(256, vert_c_dim)
        self.q = nn.Linear(dim + vert_c_dim, dim, bias=True)
        self.k = nn.Linear(dim + vert_c_dim, dim, bias=True)
        self.v = nn.Linear(dim, dim, bias=True)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)
        self.ws = ws

    def forward(self, x, size: Size_, context=None):
        B, N, C = x.shape
        C_qk = C + self.vert_c_dim
        H, W = size
        batch_num = B // 5

        context = context.repeat(B // context.shape[0], 1, 1, 1)
        context = context.view(B, -1, H * W).permute(0, 2, 1)
        context = self.context_proj(context)
        context = context.view(B, H, W, -1)

        x = x.view(B, H, W, C)
        x_qk = torch.cat([x, context], dim=-1)

        pad_l = pad_t = 0
        pad_r = (self.ws - W % self.ws) % self.ws
        pad_b = (self.ws - H % self.ws) % self.ws
        x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
        x_qk = F.pad(x_qk, (0, 0, pad_l, pad_r, pad_t, pad_b))
        _, Hp, Wp, _ = x.shape
        _h, _w = Hp // self.ws, Wp // self.ws
        padded_N = Hp * Wp

        coords = coords_grid(B, Hp, Wp).to(x.device)
        coords = coords.view(B, 2, -1).permute(0, 2, 1)
        coords_enc = LinearPositionEmbeddingSine(coords, dim=C_qk)
        coords_enc = coords_enc.reshape(B, Hp, Wp, C_qk)

        q = self.q(x_qk + coords_enc).reshape(B, _h, self.ws, _w, self.ws, self.num_heads,
                                              C // self.num_heads).transpose(2, 3)
        q = q.reshape(B, _h * _w, self.ws * self.ws, self.num_heads, C // self.num_heads).permute(0, 1, 3, 2, 4)

        v = self.v(x)
        k = self.k(x_qk + coords_enc)
        # concate and do shifting operation together
        kv = torch.cat([k, v], dim=-1)
        kv_up = torch.cat(
            [kv[:batch_num, self.ws:Hp, :, :],
             kv[:batch_num, Hp - self.ws:Hp, :, :]], dim=1)
        kv_down = torch.cat(
            [kv[batch_num:batch_num * 2, :self.ws, :, :],
             kv[batch_num:batch_num * 2, :Hp - self.ws, :, :]], dim=1)
        kv_left = torch.cat(
            [kv[batch_num * 2:batch_num * 3, :, self.ws:Wp, :],
             kv[batch_num * 2:batch_num * 3, :, Wp - self.ws:Wp, :]], dim=2)
        kv_right = torch.cat(
            [kv[batch_num * 3:batch_num * 4, :, :self.ws, :],
             kv[batch_num * 3:batch_num * 4, :, :Wp - self.ws, :]], dim=2)
        kv_center = kv[batch_num * 4:batch_num * 5, :, :, :]
        kv_shifted = torch.cat([kv_up, kv_down, kv_left, kv_right, kv_center], dim=0)
        k, v = torch.split(kv_shifted, [self.dim, self.dim], dim=-1)

        k = k.reshape(B, _h, self.ws, _w, self.ws, self.num_heads, C // self.num_heads).transpose(2, 3)
        k = k.reshape(B, _h * _w, self.ws * self.ws, self.num_heads, C // self.num_heads).permute(0, 1, 3, 2, 4)

        v = v.reshape(B, _h, self.ws, _w, self.ws, self.num_heads, C // self.num_heads).transpose(2, 3)
        v = v.reshape(B, _h * _w, self.ws * self.ws, self.num_heads, C // self.num_heads).permute(0, 1, 3, 2, 4)

        attn = (q @ k.transpose(-2, -1)) * self.scale
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)
        attn = (attn @ v).transpose(2, 3).reshape(B, _h, _w, self.ws, self.ws, C)
        x = attn.transpose(2, 3).reshape(B, _h * self.ws, _w * self.ws, C)
        if pad_r > 0 or pad_b > 0:
            x = x[:, :H, :W, :].contiguous()
        x = x.reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class GroupAttnRPE(nn.Module):
    """ Latent cost tokens attend to different group
    """

    def __init__(self, dim, num_heads=8, attn_drop=0., proj_drop=0., ws=1):
        super(GroupAttnRPE, self).__init__()
        assert ws != 1
        assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."

        self.dim = dim
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = head_dim ** -0.5

        self.q = nn.Linear(dim, dim, bias=True)
        self.k = nn.Linear(dim, dim, bias=True)
        self.v = nn.Linear(dim, dim, bias=True)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)
        self.ws = ws

    def forward(self, x, size: Size_, context=None):
        B, N, C = x.shape
        H, W = size
        batch_num = B // 5
        x = x.view(B, H, W, C)
        pad_l = pad_t = 0
        pad_r = (self.ws - W % self.ws) % self.ws
        pad_b = (self.ws - H % self.ws) % self.ws
        x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
        _, Hp, Wp, _ = x.shape
        _h, _w = Hp // self.ws, Wp // self.ws
        padded_N = Hp * Wp

        coords = coords_grid(B, Hp, Wp).to(x.device)
        coords = coords.view(B, 2, -1).permute(0, 2, 1)
        coords_enc = LinearPositionEmbeddingSine(coords, dim=C)
        coords_enc = coords_enc.reshape(B, Hp, Wp, C)

        q = self.q(x + coords_enc).reshape(B, _h, self.ws, _w, self.ws, self.num_heads, C // self.num_heads).transpose(
            2, 3)
        q = q.reshape(B, _h * _w, self.ws * self.ws, self.num_heads, C // self.num_heads).permute(0, 1, 3, 2, 4)

        v = self.v(x)
        k = self.k(x + coords_enc)
        # concate and do shifting operation together
        kv = torch.cat([k, v], dim=-1)
        kv_up = torch.cat([kv[:batch_num, self.ws:Hp, :, :], kv[:batch_num, Hp - self.ws:Hp, :, :]], dim=1)
        kv_down = torch.cat(
            [kv[batch_num:batch_num * 2, :self.ws, :, :], kv[batch_num:batch_num * 2, :Hp - self.ws, :, :]], dim=1)
        kv_left = torch.cat(
            [kv[batch_num * 2:batch_num * 3, :, self.ws:Wp, :], kv[batch_num * 2:batch_num * 3, :, Wp - self.ws:Wp, :]],
            dim=2)
        kv_right = torch.cat(
            [kv[batch_num * 3:batch_num * 4, :, :self.ws, :], kv[batch_num * 3:batch_num * 4, :, :Wp - self.ws, :]],
            dim=2)
        kv_center = kv[batch_num * 4:batch_num * 5, :, :, :]
        kv_shifted = torch.cat([kv_up, kv_down, kv_left, kv_right, kv_center], dim=0)
        k, v = torch.split(kv_shifted, [self.dim, self.dim], dim=-1)

        k = k.reshape(B, _h, self.ws, _w, self.ws, self.num_heads, C // self.num_heads).transpose(2, 3)
        k = k.reshape(B, _h * _w, self.ws * self.ws, self.num_heads, C // self.num_heads).permute(0, 1, 3, 2, 4)

        v = v.reshape(B, _h, self.ws, _w, self.ws, self.num_heads, C // self.num_heads).transpose(2, 3)
        v = v.reshape(B, _h * _w, self.ws * self.ws, self.num_heads, C // self.num_heads).permute(0, 1, 3, 2, 4)

        attn = (q @ k.transpose(-2, -1)) * self.scale
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)
        attn = (attn @ v).transpose(2, 3).reshape(B, _h, _w, self.ws, self.ws, C)
        x = attn.transpose(2, 3).reshape(B, _h * self.ws, _w * self.ws, C)
        if pad_r > 0 or pad_b > 0:
            x = x[:, :H, :W, :].contiguous()
        x = x.reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class LocallyGroupedAttnRPEContext(nn.Module):
    """ LSA: self attention within a group
    """

    def __init__(self, dim, num_heads=8, attn_drop=0., proj_drop=0., ws=1, vert_c_dim=0):
        assert ws != 1
        super(LocallyGroupedAttnRPEContext, self).__init__()
        assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."

        self.dim = dim
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = head_dim ** -0.5
        self.vert_c_dim = vert_c_dim

        self.context_proj = nn.Linear(256, vert_c_dim)
        # context are not added to value
        self.q = nn.Linear(dim + vert_c_dim, dim, bias=True)
        self.k = nn.Linear(dim + vert_c_dim, dim, bias=True)
        self.v = nn.Linear(dim, dim, bias=True)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)
        self.ws = ws

    def forward(self, x, size: Size_, context=None):
        # There are two implementations for this function, zero padding or mask. We don't observe obvious difference for
        # both. You can choose any one, we recommend forward_padding because it's neat. However,
        # the masking implementation is more reasonable and accurate.
        B, N, C = x.shape
        H, W = size
        C_qk = C + self.vert_c_dim

        context = context.repeat(B // context.shape[0], 1, 1, 1)
        context = context.view(B, -1, H * W).permute(0, 2, 1)
        context = self.context_proj(context)
        context = context.view(B, H, W, -1)

        x = x.view(B, H, W, C)
        x_qk = torch.cat([x, context], dim=-1)

        pad_l = pad_t = 0
        pad_r = (self.ws - W % self.ws) % self.ws
        pad_b = (self.ws - H % self.ws) % self.ws
        x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
        x_qk = F.pad(x_qk, (0, 0, pad_l, pad_r, pad_t, pad_b))

        _, Hp, Wp, _ = x.shape
        _h, _w = Hp // self.ws, Wp // self.ws
        x = x.reshape(B, _h, self.ws, _w, self.ws, C).transpose(2, 3)
        x_qk = x_qk.reshape(B, _h, self.ws, _w, self.ws, C_qk).transpose(2, 3)

        v = self.v(x).reshape(
            B, _h * _w, self.ws * self.ws, 1, self.num_heads, C // self.num_heads).permute(3, 0, 1, 4, 2, 5)[0]

        coords = coords_grid(B, self.ws, self.ws).to(x.device)
        coords = coords.view(B, 2, -1).permute(0, 2, 1)
        coords_enc = LinearPositionEmbeddingSine(coords, dim=C_qk).view(B, self.ws, self.ws, C_qk)
        # coords_enc:   B, ws, ws, C
        # x:            B, _h, _w, self.ws, self.ws, C
        x_qk = x_qk + coords_enc[:, None, None, :, :, :]

        q = self.q(x_qk).reshape(
            B, _h * _w, self.ws * self.ws, 1, self.num_heads, C // self.num_heads).permute(3, 0, 1, 4, 2, 5)[0]
        k = self.k(x_qk).reshape(
            B, _h * _w, self.ws * self.ws, 1, self.num_heads, C // self.num_heads).permute(3, 0, 1, 4, 2, 5)[0]
        attn = (q @ k.transpose(-2, -1)) * self.scale
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)
        attn = (attn @ v).transpose(2, 3).reshape(B, _h, _w, self.ws, self.ws, C)
        x = attn.transpose(2, 3).reshape(B, _h * self.ws, _w * self.ws, C)
        if pad_r > 0 or pad_b > 0:
            x = x[:, :H, :W, :].contiguous()
        x = x.reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class GlobalSubSampleAttnRPEContext(nn.Module):
    """ GSA: using a  key to summarize the information for a group to be efficient.
    """

    def __init__(self, dim, num_heads=8, attn_drop=0., proj_drop=0., sr_ratio=1, vert_c_dim=0):
        super().__init__()
        assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."

        self.dim = dim
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = head_dim ** -0.5

        self.vert_c_dim = vert_c_dim
        self.context_proj = nn.Linear(256, vert_c_dim)
        self.q = nn.Linear(dim + vert_c_dim, dim, bias=True)
        self.k = nn.Linear(dim, dim, bias=True)
        self.v = nn.Linear(dim, dim, bias=True)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

        self.sr_ratio = sr_ratio
        if sr_ratio > 1:
            self.sr_key = nn.Conv2d(dim + vert_c_dim, dim, kernel_size=sr_ratio, stride=sr_ratio)
            self.sr_value = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio)
            self.norm = nn.LayerNorm(dim)
        else:
            self.sr = None
            self.norm = None

    def forward(self, x, size: Size_, context=None):
        B, N, C = x.shape
        C_qk = C + self.vert_c_dim
        H, W = size
        context = context.repeat(B // context.shape[0], 1, 1, 1)
        context = context.view(B, -1, H * W).permute(0, 2, 1)
        context = self.context_proj(context)
        context = context.view(B, H, W, -1)
        x = x.view(B, H, W, C)
        x_qk = torch.cat([x, context], dim=-1)
        pad_l = pad_t = 0
        pad_r = (self.sr_ratio - W % self.sr_ratio) % self.sr_ratio
        pad_b = (self.sr_ratio - H % self.sr_ratio) % self.sr_ratio
        x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
        x_qk = F.pad(x_qk, (0, 0, pad_l, pad_r, pad_t, pad_b))

        _, Hp, Wp, _ = x.shape
        padded_size = (Hp, Wp)
        padded_N = Hp * Wp
        x = x.view(B, -1, C)
        x_qk = x_qk.view(B, -1, C_qk)

        coords = coords_grid(B, *padded_size).to(x.device)
        coords = coords.view(B, 2, -1).permute(0, 2, 1)
        coords_enc = LinearPositionEmbeddingSine(coords, dim=C_qk)
        # coords_enc:   B, Hp*Wp, C
        # x:            B, Hp*Wp, C
        q = self.q(x_qk + coords_enc).reshape(B, padded_N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)

        if self.sr_key is not None:
            x = x.permute(0, 2, 1).reshape(B, C, *padded_size)
            x_qk = x_qk.permute(0, 2, 1).reshape(B, C_qk, *padded_size)
            x = self.sr_value(x).reshape(B, C, -1).permute(0, 2, 1)
            x_qk = self.sr_key(x_qk).reshape(B, C, -1).permute(0, 2, 1)
            x = self.norm(x)
            x_qk = self.norm(x_qk)

        coords = coords_grid(B, padded_size[0] // self.sr_ratio, padded_size[1] // self.sr_ratio).to(x.device)
        coords = coords.view(B, 2, -1).permute(0, 2, 1) * self.sr_ratio
        # align the coordinate of local and global
        coords_enc = LinearPositionEmbeddingSine(coords, dim=C)
        k = self.k(x_qk + coords_enc).reshape(B, (padded_size[0] // self.sr_ratio) * (padded_size[1] // self.sr_ratio),
                                              self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
        v = self.v(x).reshape(B, (padded_size[0] // self.sr_ratio) * (padded_size[1] // self.sr_ratio), self.num_heads,
                              C // self.num_heads).permute(0, 2, 1, 3)

        attn = (q @ k.transpose(-2, -1)) * self.scale
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(B, Hp, Wp, C)
        if pad_r > 0 or pad_b > 0:
            x = x[:, :H, :W, :].contiguous()

        x = x.reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)

        return x


class LocallyGroupedAttnRPE(nn.Module):
    """ LSA: self attention within a group
    """

    def __init__(self, dim, num_heads=8, attn_drop=0., proj_drop=0., ws=1):
        assert ws != 1
        super(LocallyGroupedAttnRPE, self).__init__()
        assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."

        self.dim = dim
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = head_dim ** -0.5

        self.q = nn.Linear(dim, dim, bias=True)
        self.k = nn.Linear(dim, dim, bias=True)
        self.v = nn.Linear(dim, dim, bias=True)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)
        self.ws = ws

    def forward(self, x, size: Size_, context=None):
        # There are two implementations for this function, zero padding or mask. We don't observe obvious difference for
        # both. You can choose any one, we recommend forward_padding because it's neat. However,
        # the masking implementation is more reasonable and accurate.
        B, N, C = x.shape
        H, W = size
        x = x.view(B, H, W, C)
        pad_l = pad_t = 0
        pad_r = (self.ws - W % self.ws) % self.ws
        pad_b = (self.ws - H % self.ws) % self.ws
        x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
        _, Hp, Wp, _ = x.shape
        _h, _w = Hp // self.ws, Wp // self.ws
        x = x.reshape(B, _h, self.ws, _w, self.ws, C).transpose(2, 3)
        v = self.v(x).reshape(
            B, _h * _w, self.ws * self.ws, 1, self.num_heads, C // self.num_heads).permute(3, 0, 1, 4, 2, 5)[0]

        coords = coords_grid(B, self.ws, self.ws).to(x.device)
        coords = coords.view(B, 2, -1).permute(0, 2, 1)
        coords_enc = LinearPositionEmbeddingSine(coords, dim=C).view(B, self.ws, self.ws, C)
        # coords_enc:   B, ws, ws, C
        # x:            B, _h, _w, self.ws, self.ws, C
        x = x + coords_enc[:, None, None, :, :, :]

        q = self.q(x).reshape(
            B, _h * _w, self.ws * self.ws, 1, self.num_heads, C // self.num_heads).permute(3, 0, 1, 4, 2, 5)[0]
        k = self.k(x).reshape(
            B, _h * _w, self.ws * self.ws, 1, self.num_heads, C // self.num_heads).permute(3, 0, 1, 4, 2, 5)[0]
        attn = (q @ k.transpose(-2, -1)) * self.scale
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)
        attn = (attn @ v).transpose(2, 3).reshape(B, _h, _w, self.ws, self.ws, C)
        x = attn.transpose(2, 3).reshape(B, _h * self.ws, _w * self.ws, C)
        if pad_r > 0 or pad_b > 0:
            x = x[:, :H, :W, :].contiguous()
        x = x.reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class GlobalSubSampleAttnRPE(nn.Module):
    """ GSA: using a  key to summarize the information for a group to be efficient.
    """

    def __init__(self, dim, num_heads=8, attn_drop=0., proj_drop=0., sr_ratio=1):
        super().__init__()
        assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."

        self.dim = dim
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = head_dim ** -0.5

        self.q = nn.Linear(dim, dim, bias=True)
        self.k = nn.Linear(dim, dim, bias=True)
        self.v = nn.Linear(dim, dim, bias=True)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

        self.sr_ratio = sr_ratio
        if sr_ratio > 1:
            self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio)
            self.norm = nn.LayerNorm(dim)
        else:
            self.sr = None
            self.norm = None

    def forward(self, x, size: Size_, context=None):
        B, N, C = x.shape
        H, W = size
        x = x.view(B, H, W, C)
        pad_l = pad_t = 0
        pad_r = (self.sr_ratio - W % self.sr_ratio) % self.sr_ratio
        pad_b = (self.sr_ratio - H % self.sr_ratio) % self.sr_ratio
        x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
        _, Hp, Wp, _ = x.shape
        padded_size = (Hp, Wp)
        padded_N = Hp * Wp
        x = x.view(B, -1, C)

        coords = coords_grid(B, *padded_size).to(x.device)
        coords = coords.view(B, 2, -1).permute(0, 2, 1)
        coords_enc = LinearPositionEmbeddingSine(coords, dim=C)
        # coords_enc:   B, Hp*Wp, C
        # x:            B, Hp*Wp, C
        q = self.q(x + coords_enc).reshape(B, padded_N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)

        if self.sr is not None:
            x = x.permute(0, 2, 1).reshape(B, C, *padded_size)
            x = self.sr(x).reshape(B, C, -1).permute(0, 2, 1)
            x = self.norm(x)

        coords = coords_grid(B, padded_size[0] // self.sr_ratio, padded_size[1] // self.sr_ratio).to(x.device)
        coords = coords.view(B, 2, -1).permute(0, 2, 1) * self.sr_ratio
        # align the coordinate of local and global
        coords_enc = LinearPositionEmbeddingSine(coords, dim=C)
        k = self.k(x + coords_enc).reshape(B, (padded_size[0] // self.sr_ratio) * (padded_size[1] // self.sr_ratio),
                                           self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
        v = self.v(x).reshape(B, (padded_size[0] // self.sr_ratio) * (padded_size[1] // self.sr_ratio), self.num_heads,
                              C // self.num_heads).permute(0, 2, 1, 3)

        attn = (q @ k.transpose(-2, -1)) * self.scale
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(B, Hp, Wp, C)
        if pad_r > 0 or pad_b > 0:
            x = x[:, :H, :W, :].contiguous()

        x = x.reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)

        return x


class CrossGlobalSubSampleAttnRPE(nn.Module):
    """ GSA: using a  key to summarize the information for a group to be efficient.
    """

    def __init__(self, dim, num_heads=8, attn_drop=0., proj_drop=0., sr_ratio=1):
        super().__init__()
        assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."

        self.dim = dim
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = head_dim ** -0.5

        self.q = nn.Linear(dim, dim, bias=True)
        self.k = nn.Linear(dim, dim, bias=True)
        self.v = nn.Linear(dim, dim, bias=True)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

        self.sr_ratio = sr_ratio
        if sr_ratio > 1:
            self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio)
            self.norm = nn.LayerNorm(dim)
        else:
            self.sr = None
            self.norm = None

    def forward(self, x, tgt, size: Size_):
        B, N, C = x.shape
        coords = coords_grid(B, *size).to(x.device)
        coords = coords.view(B, 2, -1).permute(0, 2, 1)
        coords_enc = LinearPositionEmbeddingSine(coords, dim=C)
        # coords_enc:   B, H*W, C
        # x:            B, H*W, C
        q = self.q(x + coords_enc).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)

        if self.sr is not None:
            tgt = tgt.permute(0, 2, 1).reshape(B, C, *size)
            tgt = self.sr(tgt).reshape(B, C, -1).permute(0, 2, 1)
            tgt = self.norm(tgt)
        coords = coords_grid(B, size[0] // self.sr_ratio, size[1] // self.sr_ratio).to(x.device)
        coords = coords.view(B, 2, -1).permute(0, 2, 1) * self.sr_ratio
        # align the coordinate of local and global
        coords_enc = LinearPositionEmbeddingSine(coords, dim=C)
        k = self.k(tgt + coords_enc).reshape(B, (size[0] // self.sr_ratio) * (size[1] // self.sr_ratio), self.num_heads,
                                             C // self.num_heads).permute(0, 2, 1, 3)
        v = self.v(tgt).reshape(B, (size[0] // self.sr_ratio) * (size[1] // self.sr_ratio), self.num_heads,
                                C // self.num_heads).permute(0, 2, 1, 3)

        attn = (q @ k.transpose(-2, -1)) * self.scale
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)

        return x


class LocallyGroupedAttn(nn.Module):
    """ LSA: self attention within a group
    """

    def __init__(self, dim, num_heads=8, attn_drop=0., proj_drop=0., ws=1):
        assert ws != 1
        super(LocallyGroupedAttn, self).__init__()
        assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."

        self.dim = dim
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = head_dim ** -0.5

        self.qkv = nn.Linear(dim, dim * 3, bias=True)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)
        self.ws = ws

    def forward(self, x, size: Size_):
        # There are two implementations for this function, zero padding or mask. We don't observe obvious difference for
        # both. You can choose any one, we recommend forward_padding because it's neat. However,
        # the masking implementation is more reasonable and accurate.
        B, N, C = x.shape
        H, W = size
        x = x.view(B, H, W, C)
        pad_l = pad_t = 0
        pad_r = (self.ws - W % self.ws) % self.ws
        pad_b = (self.ws - H % self.ws) % self.ws
        x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
        _, Hp, Wp, _ = x.shape
        _h, _w = Hp // self.ws, Wp // self.ws
        x = x.reshape(B, _h, self.ws, _w, self.ws, C).transpose(2, 3)
        qkv = self.qkv(x).reshape(
            B, _h * _w, self.ws * self.ws, 3, self.num_heads, C // self.num_heads).permute(3, 0, 1, 4, 2, 5)
        q, k, v = qkv[0], qkv[1], qkv[2]
        attn = (q @ k.transpose(-2, -1)) * self.scale
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)
        attn = (attn @ v).transpose(2, 3).reshape(B, _h, _w, self.ws, self.ws, C)
        x = attn.transpose(2, 3).reshape(B, _h * self.ws, _w * self.ws, C)
        if pad_r > 0 or pad_b > 0:
            x = x[:, :H, :W, :].contiguous()
        x = x.reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class GlobalSubSampleAttn(nn.Module):
    """ GSA: using a  key to summarize the information for a group to be efficient.
    """

    def __init__(self, dim, num_heads=8, attn_drop=0., proj_drop=0., sr_ratio=1):
        super().__init__()
        assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."

        self.dim = dim
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = head_dim ** -0.5

        self.q = nn.Linear(dim, dim, bias=True)
        self.kv = nn.Linear(dim, dim * 2, bias=True)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

        self.sr_ratio = sr_ratio
        if sr_ratio > 1:
            self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio)
            self.norm = nn.LayerNorm(dim)
        else:
            self.sr = None
            self.norm = None

    def forward(self, x, size: Size_):
        B, N, C = x.shape
        q = self.q(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)

        if self.sr is not None:
            x = x.permute(0, 2, 1).reshape(B, C, *size)
            x = self.sr(x).reshape(B, C, -1).permute(0, 2, 1)
            x = self.norm(x)
        kv = self.kv(x).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        k, v = kv[0], kv[1]

        attn = (q @ k.transpose(-2, -1)) * self.scale
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)

        return x


class CrossGlobalSubSampleAttn(nn.Module):
    """ GSA: using a  key to summarize the information for a group to be efficient.
    """

    def __init__(self, dim, num_heads=8, attn_drop=0., proj_drop=0., sr_ratio=1):
        super().__init__()
        assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."

        self.dim = dim
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = head_dim ** -0.5

        self.q = nn.Linear(dim, dim, bias=True)
        self.kv = nn.Linear(dim, dim * 2, bias=True)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

        self.sr_ratio = sr_ratio
        if sr_ratio > 1:
            self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio)
            self.norm = nn.LayerNorm(dim)
        else:
            self.sr = None
            self.norm = None

    def forward(self, x, tgt, size: Size_):
        B, N, C = x.shape
        q = self.q(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)

        if self.sr is not None:
            tgt = tgt.permute(0, 2, 1).reshape(B, C, *size)
            tgt = self.sr(tgt).reshape(B, C, -1).permute(0, 2, 1)
            tgt = self.norm(tgt)
        kv = self.kv(tgt).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        k, v = kv[0], kv[1]

        attn = (q @ k.transpose(-2, -1)) * self.scale
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)

        return x


class CrossBlock(nn.Module):

    def __init__(self, dim, num_heads, mlp_ratio=4., drop=0., attn_drop=0., drop_path=0.,
                 act_layer=nn.GELU, norm_layer=nn.LayerNorm, sr_ratio=1, ws=None, with_rpe=True):
        super().__init__()
        self.norm1 = norm_layer(dim)
        self.attn = CrossGlobalSubSampleAttnRPE(dim, num_heads, attn_drop, drop, sr_ratio)
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)

    def forward(self, src, tgt, size: Size_):
        src_shortcut, tgt_shortcut = src, tgt

        src, tgt = self.norm1(src), self.norm1(tgt)
        src = src_shortcut + self.drop_path(self.attn(src, tgt, size))
        tgt = tgt_shortcut + self.drop_path(self.attn(tgt, src, size))

        src = src + self.drop_path(self.mlp(self.norm2(src)))
        tgt = tgt + self.drop_path(self.mlp(self.norm2(tgt)))
        return src, tgt


class Block(nn.Module):

    def __init__(self, dim, num_heads, mlp_ratio=4., drop=0., attn_drop=0., drop_path=0.,
                 act_layer=nn.GELU, norm_layer=nn.LayerNorm, sr_ratio=1, ws=None, with_rpe=False, vert_c_dim=0):
        super().__init__()
        self.norm1 = norm_layer(dim)
        if ws == 1:
            if with_rpe:
                if vert_c_dim > 0:
                    self.attn = GlobalSubSampleAttnRPEContext(dim, num_heads, attn_drop, drop, sr_ratio, vert_c_dim)
                else:
                    self.attn = GlobalSubSampleAttnRPE(dim, num_heads, attn_drop, drop, sr_ratio)
            else:
                self.attn = GlobalSubSampleAttn(dim, num_heads, attn_drop, drop, sr_ratio)
        else:
            if with_rpe:
                if vert_c_dim > 0:
                    self.attn = LocallyGroupedAttnRPEContext(dim, num_heads, attn_drop, drop, ws, vert_c_dim)
                else:
                    self.attn = LocallyGroupedAttnRPE(dim, num_heads, attn_drop, drop, ws)
            else:
                self.attn = LocallyGroupedAttn(dim, num_heads, attn_drop, drop, ws)
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)

    def forward(self, x, size: Size_, context=None):
        x = x + self.drop_path(self.attn(self.norm1(x), size, context))
        x = x + self.drop_path(self.mlp(self.norm2(x)))
        return x


class PosConv(nn.Module):
    # PEG  from https://arxiv.org/abs/2102.10882
    def __init__(self, in_chans, embed_dim=768, stride=1):
        super(PosConv, self).__init__()
        self.proj = nn.Sequential(nn.Conv2d(in_chans, embed_dim, 3, stride, 1, bias=True, groups=embed_dim), )
        self.stride = stride

    def forward(self, x, size: Size_):
        B, N, C = x.shape
        cnn_feat_token = x.transpose(1, 2).view(B, C, *size)
        x = self.proj(cnn_feat_token)
        if self.stride == 1:
            x += cnn_feat_token
        x = x.flatten(2).transpose(1, 2)
        return x

    def no_weight_decay(self):
        return ['proj.%d.weight' % i for i in range(4)]


class PatchEmbed(nn.Module):
    """ Image to Patch Embedding
    """

    def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
        super().__init__()
        img_size = to_2tuple(img_size)
        patch_size = to_2tuple(patch_size)

        self.img_size = img_size
        self.patch_size = patch_size
        assert img_size[0] % patch_size[0] == 0 and img_size[1] % patch_size[1] == 0, \
            f"img_size {img_size} should be divided by patch_size {patch_size}."
        self.H, self.W = img_size[0] // patch_size[0], img_size[1] // patch_size[1]
        self.num_patches = self.H * self.W
        self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
        self.norm = nn.LayerNorm(embed_dim)

    def forward(self, x) -> Tuple[torch.Tensor, Size_]:
        B, C, H, W = x.shape

        x = self.proj(x).flatten(2).transpose(1, 2)
        x = self.norm(x)
        out_size = (H // self.patch_size[0], W // self.patch_size[1])

        return x, out_size


class Twins(nn.Module):
    """ Twins Vision Transfomer (Revisiting Spatial Attention)
    Adapted from PVT (PyramidVisionTransformer) class at https://github.com/whai362/PVT.git
    """

    def __init__(
            self, img_size=224, patch_size=4, in_chans=3, num_classes=1000, embed_dims=(64, 128, 256, 512),
            num_heads=(1, 2, 4, 8), mlp_ratios=(4, 4, 4, 4), drop_rate=0., attn_drop_rate=0., drop_path_rate=0.,
            norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=(3, 4, 6, 3), sr_ratios=(8, 4, 2, 1), wss=None,
            block_cls=Block, init_weight=True):
        super().__init__()
        self.num_classes = num_classes
        self.depths = depths
        self.embed_dims = embed_dims
        self.num_features = embed_dims[-1]

        img_size = to_2tuple(img_size)
        prev_chs = in_chans
        self.patch_embeds = nn.ModuleList()
        self.pos_drops = nn.ModuleList()
        for i in range(len(depths)):
            self.patch_embeds.append(PatchEmbed(img_size, patch_size, prev_chs, embed_dims[i]))
            self.pos_drops.append(nn.Dropout(p=drop_rate))
            prev_chs = embed_dims[i]
            img_size = tuple(t // patch_size for t in img_size)
            patch_size = 2

        self.blocks = nn.ModuleList()
        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]  # stochastic depth decay rule
        cur = 0
        for k in range(len(depths)):
            _block = nn.ModuleList([block_cls(
                dim=embed_dims[k], num_heads=num_heads[k], mlp_ratio=mlp_ratios[k], drop=drop_rate,
                attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer, sr_ratio=sr_ratios[k],
                ws=1 if wss is None or i % 2 == 1 else wss[k]) for i in range(depths[k])])
            self.blocks.append(_block)
            cur += depths[k]

        self.pos_block = nn.ModuleList([PosConv(embed_dim, embed_dim) for embed_dim in embed_dims])

        self.norm = norm_layer(self.num_features)

        # classification head
        self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()

        # init weights
        if init_weight:
            self.apply(self._init_weights)

    @torch.jit.ignore
    def no_weight_decay(self):
        return set(['pos_block.' + n for n, p in self.pos_block.named_parameters()])

    def get_classifier(self):
        return self.head

    def reset_classifier(self, num_classes, global_pool=''):
        self.num_classes = num_classes
        self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)
        elif isinstance(m, nn.Conv2d):
            fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
            fan_out //= m.groups
            m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
            if m.bias is not None:
                m.bias.data.zero_()
        elif isinstance(m, nn.BatchNorm2d):
            m.weight.data.fill_(1.0)
            m.bias.data.zero_()

    def forward_features(self, x):
        B = x.shape[0]
        for i, (embed, drop, blocks, pos_blk) in enumerate(
                zip(self.patch_embeds, self.pos_drops, self.blocks, self.pos_block)):
            x, size = embed(x)
            x = drop(x)
            for j, blk in enumerate(blocks):
                x = blk(x, size)
                if j == 0:
                    x = pos_blk(x, size)  # PEG here
            if i < len(self.depths) - 1:
                x = x.reshape(B, *size, -1).permute(0, 3, 1, 2).contiguous()
        x = self.norm(x)
        return x.mean(dim=1)  # GAP here

    def forward(self, x):
        x = self.forward_features(x)
        x = self.head(x)
        return x

# def _create_twins(variant, pretrained=False, **kwargs):
#     if kwargs.get('features_only', None):
#         raise RuntimeError('features_only not implemented for Vision Transformer models.')

#     model = build_model_with_cfg(
#         Twins, variant, pretrained,
#         default_cfg=default_cfgs[variant],
#         **kwargs)
#     return model


# @register_model
# def twins_pcpvt_small(pretrained=False, **kwargs):
#     model_kwargs = dict(
#         patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
#         depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1], **kwargs)
#     return _create_twins('twins_pcpvt_small', pretrained=pretrained, **model_kwargs)


# @register_model
# def twins_pcpvt_base(pretrained=False, **kwargs):
#     model_kwargs = dict(
#         patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
#         depths=[3, 4, 18, 3], sr_ratios=[8, 4, 2, 1], **kwargs)
#     return _create_twins('twins_pcpvt_base', pretrained=pretrained, **model_kwargs)


# @register_model
# def twins_pcpvt_large(pretrained=False, **kwargs):
#     model_kwargs = dict(
#         patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
#         depths=[3, 8, 27, 3], sr_ratios=[8, 4, 2, 1], **kwargs)
#     return _create_twins('twins_pcpvt_large', pretrained=pretrained, **model_kwargs)


# @register_model
# def twins_svt_small(pretrained=False, **kwargs):
#     model_kwargs = dict(
#         patch_size=4, embed_dims=[64, 128, 256, 512], num_heads=[2, 4, 8, 16], mlp_ratios=[4, 4, 4, 4],
#         depths=[2, 2, 10, 4], wss=[7, 7, 7, 7], sr_ratios=[8, 4, 2, 1], **kwargs)
#     return _create_twins('twins_svt_small', pretrained=pretrained, **model_kwargs)


# @register_model
# def twins_svt_base(pretrained=False, **kwargs):
#     model_kwargs = dict(
#         patch_size=4, embed_dims=[96, 192, 384, 768], num_heads=[3, 6, 12, 24], mlp_ratios=[4, 4, 4, 4],
#         depths=[2, 2, 18, 2], wss=[7, 7, 7, 7], sr_ratios=[8, 4, 2, 1], **kwargs)
#     return _create_twins('twins_svt_base', pretrained=pretrained, **model_kwargs)


# @register_model
# def twins_svt_large(pretrained=False, **kwargs):
#     model_kwargs = dict(
#         patch_size=4, embed_dims=[128, 256, 512, 1024], num_heads=[4, 8, 16, 32], mlp_ratios=[4, 4, 4, 4],
#         depths=[2, 2, 18, 2], wss=[7, 7, 7, 7], sr_ratios=[8, 4, 2, 1], **kwargs)
#     return _create_twins('twins_svt_large', pretrained=pretrained, **model_kwargs)

# @register_model
# def twins_svt_large_context(pretrained=False, **kwargs):
#     model_kwargs = dict(
#         patch_size=4, embed_dims=[128, 256, 512, 1024], num_heads=[4, 8, 16, 32], mlp_ratios=[4, 4, 4, 4],
#         depths=[2, 2, 18, 2], wss=[7, 7, 7, 7], sr_ratios=[8, 4, 2, 1], in_chans=6, init_weight=False, **kwargs)
#     return _create_twins('twins_svt_large', pretrained=pretrained, **model_kwargs)
# # def twins_svt_large_context(pretrained=False, **kwargs):
# #     model_kwargs = dict(
# #         patch_size=4, embed_dims=[128, 256], num_heads=[4, 8], mlp_ratios=[4, 4],
# #         depths=[2, 2], wss=[7, 7], sr_ratios=[8, 4], in_chans=6, init_weight=False, **kwargs)
# #     return _create_twins('twins_svt_large', pretrained=pretrained, **model_kwargs)