File size: 7,713 Bytes
8d015d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
from pathlib import Path
import os
from PIL import Image
import random
import numpy as np
import cv2

from datasets import register
from .data_utils import *

import torch
import torchvision
import torchvision.transforms as T
import torchvision.transforms.functional as TF
from torch.utils.data import Dataset

perm = [(0, 1, 2), (0, 2, 1), (1, 0, 2), (1, 2, 0), (2, 0, 1), (2, 1, 0)]
rotate = [cv2.ROTATE_90_CLOCKWISE, cv2.ROTATE_180, cv2.ROTATE_90_COUNTERCLOCKWISE]


@register('vimeo')
class Vimeo(Dataset):
    def __init__(self, root_path, patch_size=(224, 224), split='train', flow="none", flow_root=None,
                 use_distance=False, distance_root=None, tri_trainlist='tri_trainlist.txt'):
        super(Vimeo, self).__init__()
        self.data_root = root_path
        self.mode = split
        self.patch_size = patch_size
        train_fn = os.path.join(self.data_root, tri_trainlist)
        test_fn = os.path.join(self.data_root, 'tri_testlist.txt')
#         self.flow = 't0'
        self.flow = flow
        self.flow_root = flow_root if flow!='none' else None
        self.use_distance = use_distance
        self.distance_root = distance_root
        
        with open(train_fn, "r") as f:
            self.trainlist = [line.strip() for line in f.readlines() if len(line.strip())>0]
#             self.trainlist = [line.strip() for line in f.readlines() if len(line.strip())>0 and line.strip().endswith(('e', 'n'))]
        with open(test_fn, "r") as f:
            self.testlist = [line.strip() for line in f.readlines() if len(line.strip())>0]
        #cnt = int(len(self.trainlist) * 0.95)
        if self.mode == "train":
            #self.img_list = self.trainlist[:cnt]
            self.img_list = self.trainlist
        elif self.mode == "test":
            self.img_list = self.testlist
        else:
            self.img_list = self.testlist
            #self.img_list = self.trainlist[cnt:]

    def get_img(self, index):
        img_path = os.path.join(self.data_root, "sequences", self.img_list[index])
        if os.path.exists(os.path.join(img_path, "im1.png")):
            img0 = cv2.imread(os.path.join(img_path, "im1.png"))[:, :896, ::-1]
            imgt = cv2.imread(os.path.join(img_path, "im2.png"))[:, :896, ::-1]
            img1 = cv2.imread(os.path.join(img_path, "im3.png"))[:, :896, ::-1]
        
        elif os.path.exists(os.path.join(img_path, "im1.jpg")):
            img0 = cv2.imread(os.path.join(img_path, "im1.jpg"))[:, :, ::-1]
            imgt = cv2.imread(os.path.join(img_path, "im2.jpg"))[:, :, ::-1]
            img1 = cv2.imread(os.path.join(img_path, "im3.jpg"))[:, :, ::-1]
        else:
            print(img_path,"파일이 μ™œ μ—†μ§€?")
            
#         print(f'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!{self.flow}!!!!!!!!!!!!!!!!!!!!!!!!!!!!!')
        if self.flow == 't0':
#             if not os.path.exists(os.path.join(self.data_root, "flow_flow_former", self.img_list[index], "flow_t0.flo")):
            if not os.path.exists(os.path.join(self.flow_root, 'sequences', self.img_list[index], 'flowt0.npy')):
                print(self.img_list[index])
#             flowt0 = read_flow(os.path.join(self.data_root, "flow_flow_former", self.img_list[index], "flow_t0.flo"))
#             flowt1 = read_flow(os.path.join(self.data_root, "flow_flow_former", self.img_list[index], "flow_t1.flo"))
            flowt0 = np.load(os.path.join(self.flow_root, 'sequences', self.img_list[index], 'flowt0.npy')).astype(np.float32)
            flowt1 = np.load(os.path.join(self.flow_root, 'sequences', self.img_list[index], 'flowt1.npy')).astype(np.float32)
        elif self.flow == '01':
            flowt0 = read_flow(os.path.join(self.data_root, "flow_flow_former", self.img_list[index], "flow_01.flo"))
            flowt1 = read_flow(os.path.join(self.data_root, "flow_flow_former", self.img_list[index], "flow_10.flo"))
        elif self.flow == '0t':
            flowt0 = read_flow(os.path.join(self.data_root, "flow_flow_former", self.img_list[index], "flow_0t.flo"))
            flowt1 = read_flow(os.path.join(self.data_root, "flow_flow_former", self.img_list[index], "flow_1t.flo"))
        else:
            flowt0 = None
            flowt1 = None
        return img0, imgt, img1, flowt0, flowt1

    def __getitem__(self, item):
        img0, imgt, img1, flowt0, flowt1 = self.get_img(item)
        distance = None
        H,W,_ = img0.shape
        time_step = torch.Tensor([0.5]).reshape(1, 1, 1)
        if self.mode == "train":
            if random.random() > 0.5:
                img0, imgt, img1, time_step, flowt0, flowt1 = random_temporal_flip(img0, imgt, img1, time_step, flowt0, flowt1)
                if self.use_distance and self.distance_root is not None:
                    distance_path = os.path.join(self.distance_root, "sequences", self.img_list[item])
                    distance = np.load(os.path.join(distance_path, 'distance_rev.npy')).astype(np.float32).reshape(H,W,1)
                    asdf = 'distance_rev.npy'
            else:
                if self.use_distance and self.distance_root is not None:
                    distance_path = os.path.join(self.distance_root, "sequences", self.img_list[item])
                    distance = np.load(os.path.join(distance_path, 'distance_for.npy')).astype(np.float32).reshape(H,W,1)
                    asdf = 'distance_for.npy'
            if random.random() > 0.9:
                img0, imgt, img1, flowt0, flowt1, distance = random_resize(img0, imgt, img1, flowt0, flowt1, distance)
            img0, imgt, img1, flowt0, flowt1, distance = random_crop(img0, imgt, img1, self.patch_size, flowt0, flowt1, distance)
            if random.random() > 0.5:
                img0, imgt, img1, flowt0, flowt1, distance = random_hor_flip(img0, imgt, img1, flowt0, flowt1, distance)
            if random.random() > 0.5:
                img0, imgt, img1, flowt0, flowt1, distance = random_ver_flip(img0, imgt, img1, flowt0, flowt1, distance)
            if random.random() > 0.5:
                img0, imgt, img1 = random_color_permutation(img0, imgt, img1)
            degree = random.randint(0, 3)
            img0, imgt, img1, flowt0, flowt1, distance = random_rotation(img0, imgt, img1, degree, flowt0, flowt1, distance)
        else:
            if self.distance_root is not None:
                distance_path = os.path.join(self.distance_root, "sequences", self.img_list[item], 'distance_for.npy')
                distance = np.load(distance_path).astype(np.float32).reshape(H,W,1)
        img0, imgt, img1 = TF.to_tensor(img0.copy()), TF.to_tensor(imgt.copy()), TF.to_tensor(img1.copy())
        input_dict = {
            'img0': img0, 'imgt': imgt, 'img1': img1, 'time_step': time_step, 'scene_name': self.img_list[item]
        }
        if flowt0 is not None and flowt1 is not None:
            flowt0 = torch.from_numpy(flowt0).type(torch.float32).permute(2, 0, 1)
            flowt1 = torch.from_numpy(flowt1).type(torch.float32).permute(2, 0, 1)
            input_dict['flowt0'] = flowt0
            input_dict['flowt1'] = flowt1
        if self.use_distance:
            if self.distance_root is not None:
                distance = TF.to_tensor(distance.copy())
                if torch.any(torch.isnan(distance)):
                    print(f'@@@@@@@@@@@@@@@@@@@@@@{self.img_list[item]}, {asdf}@@@@@@@@@@@@@@@@@@@@@@')
            else:
                distance = np.array(0.5).reshape(1,1,1).repeat(H, axis=0).repeat(W, axis=1)
                distance = torch.from_numpy(distance).type(torch.float32).permute(2,0,1)
            input_dict['distance'] = distance
        return input_dict

    def __len__(self):
        return len(self.img_list)