import os
from datetime import datetime
import ee
import json
import geemap
import numpy as np
import geemap.foliumap as gee_folium
import leafmap.foliumap as leaf_folium
import streamlit as st
import pandas as pd
import geopandas as gpd
from shapely.ops import transform
from functools import reduce
import plotly.express as px
import branca.colormap as cm
import folium
import pyproj
from io import StringIO, BytesIO
import requests
import kml2geojson
print(geemap.__version__)
print(folium.__version__)
print(geemap.Report())
st.set_page_config(layout="wide")
m = st.markdown(
"""
""",
unsafe_allow_html=True,
)
# Logo
st.write(
f"""
This tool is developed by Sustainability Lab, IIT Gandhinagar and supported by Gujarat Forest Department
""",
unsafe_allow_html=True,
)
if file_url is None:
st.warning(
"Please provide a KML or GeoJSON URL as a query parameter, e.g., `https://sustainabilitylabiitgn-ndvi-perg.hf.space?file_url=
` or upload a file."
)
show_credits()
st.stop()
with st.expander("Advanced Settings"):
st.write("Select the vegetation indices to calculate:")
all_veg_indices = ["NDVI", "EVI", "EVI2"]
formulas = {
"NDVI": r"$\frac{NIR - Red}{NIR + Red}$",
"EVI": r"$G \times \frac{NIR - Red}{NIR + C1 \times Red - C2 \times Blue + L}$",
"EVI2": r"$G \times \frac{NIR - Red}{NIR + L + C \times Red}$",
}
defaults = [True, False, False]
veg_indices = []
for veg_index, default in zip(all_veg_indices, defaults):
if st.checkbox(f"{veg_index} = {formulas[veg_index]}", value=default):
veg_indices.append(veg_index)
st.write("Select the parameters for the EVI/EVI2 calculation (default is as per EVI's Wikipedia page)")
cols = st.columns(5)
evi_vars = {}
for col, name, default in zip(cols, ["G", "C1", "C2", "L", "C"], [2.5, 6, 7.5, 1, 2.4]):
value = col.number_input(f"{name}", value=default)
evi_vars[name] = value
############################################
# Functions
############################################
# Function of find best suited statewise EPSG code
def get_gdf_from_file_url(file_url):
if isinstance(file_url, str):
if file_url.startswith("https://drive.google.com/file/d/"):
ID = file_url.replace("https://drive.google.com/file/d/", "").split("/")[0]
file_url = f"https://drive.google.com/uc?id={ID}"
elif file_url.startswith("https://drive.google.com/open?id="):
ID = file_url.replace("https://drive.google.com/open?id=", "")
file_url = f"https://drive.google.com/uc?id={ID}"
response = requests.get(file_url)
bytes_data = BytesIO(response.content)
string_data = response.text
else:
bytes_data = BytesIO(file_url.getvalue())
string_data = file_url.getvalue().decode("utf-8")
if string_data.startswith("{info}", unsafe_allow_html=True)
############################################
# One time setup
############################################
def one_time_setup():
credentials_path = os.path.expanduser("~/.config/earthengine/credentials")
if os.path.exists(credentials_path):
pass # Earth Engine credentials already exist
elif "EE" in os.environ: # write the credentials to the file
ee_credentials = os.environ.get("EE")
os.makedirs(os.path.dirname(credentials_path), exist_ok=True)
with open(credentials_path, "w") as f:
f.write(ee_credentials)
else:
raise ValueError(
f"Earth Engine credentials not found at {credentials_path} or in the environment variable 'EE'"
)
ee.Initialize()
satellites = {
"COPERNICUS/S2_SR_HARMONIZED": {
"scale": 10,
"collection": ee.ImageCollection("COPERNICUS/S2_SR_HARMONIZED")
.select(
["B2", "B4", "B8", "MSK_CLDPRB", "TCI_R", "TCI_G", "TCI_B"],
["Blue", "Red", "NIR", "MSK_CLDPRB", "R", "G", "B"],
)
.map(lambda image: add_indices(image, nir_band="NIR", red_band="Red", blue_band="Blue")),
},
}
st.session_state.satellites = satellites
with open("wayback_imagery.json") as f:
st.session_state.wayback_mapping = json.load(f)
if "one_time_setup_done" not in st.session_state:
one_time_setup()
st.session_state.one_time_setup_done = True
satellites = st.session_state.satellites
wayback_mapping = st.session_state.wayback_mapping
############################################
# App
############################################
# Input: Satellite Sources
st.markdown(f"Satellite source: `{list(satellites.keys())[0]}`")
satellite_selected = {}
for satellite in satellites:
satellite_selected[satellite] = satellite
# Date range input
max_year = datetime.now().year
jan_1 = pd.to_datetime(f"{max_year}/01/01", format="%Y/%m/%d")
dec_31 = pd.to_datetime(f"{max_year}/12/31", format="%Y/%m/%d")
nov_15 = pd.to_datetime(f"{max_year}/11/15", format="%Y/%m/%d")
dec_15 = pd.to_datetime(f"{max_year}/12/15", format="%Y/%m/%d")
input_daterange = st.date_input(
"Date Range (Ignore year. App will compute indices for this date range in each year starting from \"Minimum Year\" to \"Maximum Year\")", (nov_15, dec_15), jan_1, dec_31
)
cols = st.columns(2)
with cols[0]:
min_year = int(st.number_input("Minimum Year", value=2019, min_value=2015, step=1))
with cols[1]:
max_year = int(st.number_input("Maximum Year", value=max_year, min_value=2015, step=1))
buffer = st.number_input("Buffer (m)", value=50, min_value=0, step=1)
input_gdf = get_gdf_from_file_url(file_url)
input_gdf = preprocess_gdf(input_gdf)
if len(input_gdf) > 1:
st.warning(f"Only the first polygon in the KML will be processed; all other geometries will be ignored.")
# input_geometry_idx = st.selectbox("Select the geometry", input_gdf.index, format_func=format_fn)
for i in range(len(input_gdf)):
geometry_gdf = input_gdf[input_gdf.index == i]
if is_valid_polygon(geometry_gdf):
break
else:
st.error(f"No polygon found inside KML. Please check the KML file.")
st.stop()
geometry_gdf = to_best_crs(geometry_gdf)
outer_geometry_gdf = geometry_gdf.copy()
outer_geometry_gdf["geometry"] = outer_geometry_gdf["geometry"].buffer(buffer)
buffer_geometry_gdf = (
outer_geometry_gdf.difference(geometry_gdf).reset_index().drop(columns="index")
) # reset index forces GeoSeries to GeoDataFrame
buffer_geometry_gdf["Name"] = "Buffer"
# Derived Inputs
ee_geometry = ee.Geometry(geometry_gdf.to_crs(4326).geometry.item().__geo_interface__)
ee_feature_collection = ee.FeatureCollection(ee_geometry)
buffer_ee_geometry = ee.Geometry(buffer_geometry_gdf.to_crs(4326).geometry.item().__geo_interface__)
buffer_ee_feature_collection = ee.FeatureCollection(buffer_ee_geometry)
outer_ee_geometry = ee.Geometry(outer_geometry_gdf.to_crs(4326).geometry.item().__geo_interface__)
outer_ee_feature_collection = ee.FeatureCollection(outer_ee_geometry)
# visualize the geometry
m = leaf_folium.Map()
keys = list(wayback_mapping.keys())
latest_date = sorted(keys, key=lambda x: pd.to_datetime(x))[-1]
m.add_tile_layer(
wayback_mapping[latest_date], name=f"Esri Wayback - {latest_date.replace('-', '/')}", attribution="Esri"
)
# m.add_layer(buffer_ee_feature_collection)
add_geometry_to_maps([m], opacity=0.3)
write_info(
f"""
Latest Esri Imagery - {latest_date.replace('-', '/')}
"""
)
m.to_streamlit()
# Generate stats
stats_df = pd.DataFrame(
{
"Area (m^2)": geometry_gdf.area.item(),
"Perimeter (m)": geometry_gdf.length.item(),
"Points": str(json.loads(geometry_gdf.to_crs(4326).to_json())["features"][0]["geometry"]["coordinates"]),
}, index=[0]
)
st.write("Geometry Metrics
", unsafe_allow_html=True)
# st.markdown(
# f"""| Metric | Value |
# | --- | --- |
# | Area (m^2) | {stats_df['Area (m^2)'].item():.2f} m^2 = {stats_df['Area (m^2)'].item()/10000:.2f} ha |
# | Perimeter (m) | {stats_df['Perimeter (m)'].item():.2f} m |
# """
# )
st.markdown(
f"""
Metric |
Value |
Area |
{stats_df['Area (m^2)'].item()/10000:.2f} ha |
Perimeter |
{stats_df['Perimeter (m)'].item():.2f} m |
""",
unsafe_allow_html=True
)
stats_csv = stats_df.to_csv(index=False)
st.download_button("Download Geometry Metrics", stats_csv, "geometry_metrics.csv", "text/csv", use_container_width=True)
# Submit
submit = st.button("Calculate Vegetation Indices", use_container_width=True)
if submit:
st.write("Results
", unsafe_allow_html=True)
if not any(satellite_selected.values()):
st.error("Please select at least one satellite source")
st.stop()
# Create range
start_day = input_daterange[0].day
start_month = input_daterange[0].month
end_day = input_daterange[1].day
end_month = input_daterange[1].month
dates = []
for year in range(min_year, max_year + 1):
start_date = pd.to_datetime(f"{year}-{start_month:02d}-{start_day:02d}")
end_date = pd.to_datetime(f"{year}-{end_month:02d}-{end_day:02d}")
dates.append((start_date, end_date))
result_df = pd.DataFrame()
for satellite, attrs in satellites.items():
if not satellite_selected[satellite]:
continue
with st.spinner(f"Processing {satellite} ..."):
progress_bar = st.progress(0)
for i, daterange in enumerate(dates):
process_date(daterange, satellite, veg_indices)
progress_bar.progress((i + 1) / len(dates))
st.session_state.result = result_df
print("Printing result...")
if "result" in st.session_state:
result_df = st.session_state.result
print(result_df.columns)
# drop rows with all NaN values
result_df = result_df.dropna(how="all")
# drop columns with all NaN values
result_df = result_df.dropna(axis=1, how="all")
print(result_df.columns)
print(result_df.head(2))
# df.reset_index(inplace=True)
# df.index = pd.to_datetime(df["index"], format="%Y-%m")
for column in result_df.columns:
result_df[column] = pd.to_numeric(result_df[column], errors="ignore")
df_numeric = result_df.select_dtypes(include=["float64"])
st.write(df_numeric)
df_numeric_csv = df_numeric.to_csv(index=True)
st.download_button(
"Download Time Series Data", df_numeric_csv, "vegetation_indices.csv", "text/csv", use_container_width=True
)
df_numeric.index = [daterange_str_to_year(daterange) for daterange in df_numeric.index]
for veg_index in veg_indices:
fig = px.line(df_numeric, y=[veg_index, f"{veg_index}_buffer", f"{veg_index}_ratio"], markers=True)
fig.update_layout(xaxis=dict(tickvals=df_numeric.index, ticktext=df_numeric.index))
st.plotly_chart(fig)
st.write(
"DEM and Slope from SRTM at 30m resolution
",
unsafe_allow_html=True,
)
cols = st.columns(2)
dem_map, slope_map = get_dem_slope_maps(ee.Geometry(geometry_gdf.to_crs(4326).geometry.item().__geo_interface__))
for col, param_map, title in zip(cols, [dem_map, slope_map], ["DEM Map", "Slope Map"]):
with col:
param_map.add_gdf(
geometry_gdf,
layer_name="Geometry",
style_function=lambda x: {"color": "blue", "fillOpacity": 0.0, "fillColor": "blue"},
)
write_info(f"""{title}
""")
param_map.addLayerControl()
param_map.to_streamlit()
st.write(
"Visual Comparison between Two Years
", unsafe_allow_html=True
)
cols = st.columns(2)
with cols[0]:
year_1 = st.selectbox("Year 1", result_df.index, index=0, format_func=lambda x: daterange_str_to_year(x))
with cols[1]:
year_2 = st.selectbox(
"Year 2", result_df.index, index=len(result_df.index) - 1, format_func=lambda x: daterange_str_to_year(x)
)
vis_params = {"min": 0, "max": 1, "palette": ["white", "green"]} # Example visualisation for Sentinel-2
# Create a colormap and name it as NDVI
colormap = cm.LinearColormap(colors=vis_params["palette"], vmin=vis_params["min"], vmax=vis_params["max"])
for veg_index in veg_indices:
st.write(f"{veg_index}
", unsafe_allow_html=True)
cols = st.columns(2)
for col, daterange_str in zip(cols, [year_1, year_2]):
mosaic = result_df.loc[daterange_str, f"mosaic_{veg_index}"]
with col:
m = gee_folium.Map()
m.add_tile_layer(wayback_mapping[latest_date], name=f"Esri Wayback - {latest_date.replace('-', '/')}", attribution="Esri")
veg_index_layer = gee_folium.ee_tile_layer(mosaic, {"bands": [veg_index], "min": 0, "max": 1})
if satellite == "COPERNICUS/S2_SR_HARMONIZED":
min_all = 0
max_all = 255
else:
raise ValueError(f"Unknown satellite: {satellite}")
if veg_index=='NDVI':
bins=[-1, 0, 0.1, 0.2, 0.3, 0.4, 0.5, 1]
histogram, bin_edges = get_histogram(mosaic.select(veg_index), ee_geometry, bins)
total_pix = np.sum(histogram)
formatted_histogram = [f"{h*100/total_pix:.2f}" for h in histogram]
print(histogram, bin_edges, bins, formatted_histogram)
m.add_legend(title="NDVI Class/Value",
legend_dict={'<0:Waterbody ({}%)'.format(formatted_histogram[0]): '#0000FF',
'0-0.1: Open ({}%)'.format(formatted_histogram[1]): '#FF0000',
'0.1-0.2: Highly Degraded ({}%)'.format(formatted_histogram[2]):'#FFFF00',
'0.2-0.3: Degraded ({}%)'.format(formatted_histogram[3]): '#FFA500',
'0.3-0.4: Moderately Degraded ({}%)'.format(formatted_histogram[4]): '#00FE00',
'0.4-0.5: Dense ({}%)'.format(formatted_histogram[5]): '#00A400',
'>0.5: Very Dense ({}%)'.format(formatted_histogram[6]): '#006D00',
},
position='bottomright', draggable=False)
ndvi_vis_params = {'min': -0.1,
'max': 0.6,
'palette': ['#0000FF', '#FF0000', '#FFFF00', '#FFA500', '#00FE00', '#00A400', '#006D00']}
m.add_layer(mosaic.select(veg_index).clip(outer_ee_geometry), ndvi_vis_params)
# add colorbar
# m.add_colorbar(colors=["#000000", "#00FF00"], vmin=0.0, vmax=1.0)
if veg_index!='NDVI':
m.add_layer(mosaic.select(veg_index).clip(outer_ee_geometry), vis_params)
m.add_child(colormap)
add_geometry_to_maps([m])
m.to_streamlit()
for name, key in zip(
["RGB (Least Cloud Tile Crop)", "RGB (Max NDVI Mosaic)"],
["image_visual_least_cloud", "mosaic_visual_max_ndvi"],
):
st.write(f"{name}
", unsafe_allow_html=True)
cols = st.columns(2)
for col, daterange_str in zip(cols, [year_1, year_2]):
start_date, end_date = daterange_str_to_dates(daterange_str)
mid_date = start_date + (end_date - start_date) / 2
esri_date = min(wayback_mapping.keys(), key=lambda x: abs(pd.to_datetime(x) - mid_date))
with col:
m = gee_folium.Map()
visual_mosaic = result_df.loc[daterange_str, key]
# visual_layer = gee_folium.ee_tile_layer(mosaic, {"bands": ["R", "G", "B"], "min": min_all, "max": max_all})
m.add_layer(visual_mosaic.select(["R", "G", "B"]))
add_geometry_to_maps([m])
m.to_streamlit()
st.write("Esri RGB Imagery
", unsafe_allow_html=True)
cols = st.columns(2)
for col, daterange_str in zip(cols, [year_1, year_2]):
start_date, end_date = daterange_str_to_dates(daterange_str)
mid_date = start_date + (end_date - start_date) / 2
esri_date = min(wayback_mapping.keys(), key=lambda x: abs(pd.to_datetime(x) - mid_date))
with col:
m = leaf_folium.Map()
m.add_tile_layer(wayback_mapping[esri_date], name=f"Esri Wayback Imagery - {esri_date}", attribution="Esri")
add_geometry_to_maps([m])
write_info(
f"""
Esri Imagery - {esri_date.replace('-', '/')}
"""
)
m.to_streamlit()
show_credits()