import os import utm import ee import json import geojson import geemap import numpy as np import geemap.foliumap as gee_folium import leafmap.foliumap as leaf_folium import streamlit as st import pandas as pd import geopandas as gpd from shapely.ops import transform from functools import reduce import plotly.express as px st.set_page_config(layout="wide") ############################################ # Functions ############################################ def shape_3d_to_2d(shape): if shape.has_z: return transform(lambda x, y, z: (x, y), shape) else: return shape def preprocess_gdf(gdf): gdf = gdf.to_crs(epsg=4326) gdf = gdf[["Name", "geometry"]] gdf["geometry"] = gdf["geometry"].apply(shape_3d_to_2d) return gdf def calculate_ndvi(image, nir_band, red_band): nir = image.select(nir_band) red = image.select(red_band) ndvi = (nir.subtract(red)).divide(nir.add(red)).rename("NDVI") return image.addBands(ndvi) def process_date(date, satellite): try: attrs = satellites[satellite] collection = attrs["collection"] collection = collection.filterBounds(ee_geometry) str_start_date = date+"-01" start_date = pd.to_datetime(str_start_date) end_date = start_date + pd.DateOffset(months=1) write_info(f"Processing {satellite} - {start_date} to {end_date}") collection = collection.filterDate(start_date, end_date) mosaic = collection.qualityMosaic("NDVI") fc = geemap.zonal_stats( mosaic, ee_feature_collection, scale=attrs["scale"], return_fc=True ).getInfo() mean_ndvi = fc["features"][0]["properties"]["NDVI"] if satellite == "COPERNICUS/S2_SR_HARMONIZED": cloud_mask_probability = fc["features"][0]["properties"]["MSK_CLDPRB"] / 100 else: cloud_mask_probability = None except Exception as e: print(e) mosaic = None mean_ndvi = None cloud_mask_probability = None return mosaic, mean_ndvi, cloud_mask_probability def postprocess_df(df, name): df = df.T df = df.reset_index() ndvi_df = df[df["index"].str.contains("NDVI")] ndvi_df["index"] = pd.to_datetime(ndvi_df["index"], format="%Y-%m_NDVI") ndvi_df = ndvi_df.rename(columns={"index": "Date", 0: name}) cloud_mask_probability = df[df["index"].str.contains("MSK_CLDPRB")] cloud_mask_probability["index"] = pd.to_datetime( cloud_mask_probability["index"], format="%Y-%m_MSK_CLDPRB" ) cloud_mask_probability = cloud_mask_probability.rename( columns={"index": "Date", 0: f"{name}_cloud_proba"} ) # normalize cloud_mask_probability[f"{name}_cloud_proba"] = ( cloud_mask_probability[f"{name}_cloud_proba"] / 100 ) df = pd.merge(ndvi_df, cloud_mask_probability, on="Date", how="outer") return df def write_info(info): st.write(f"{info}", unsafe_allow_html=True) ############################################ # One time setup ############################################ def one_time_setup(): credentials_path = os.path.expanduser("~/.config/earthengine/credentials") if os.path.exists(credentials_path): pass # Earth Engine credentials already exist elif "EE" in os.environ: # write the credentials to the file ee_credentials = os.environ.get("EE") os.makedirs(os.path.dirname(credentials_path), exist_ok=True) with open(credentials_path, "w") as f: f.write(ee_credentials) else: raise ValueError( f"Earth Engine credentials not found at {credentials_path} or in the environment variable 'EE'" ) ee.Initialize() satellites = { # "LANDSAT/LC08/C02/T1_TOA": { # "scale": 30, # "collection": ee.ImageCollection("LANDSAT/LC08/C02/T1_TOA") # .select(["B2", "B3", "B4", "B5"], ["B", "G", "R", "NIR"]) # .map(lambda image: calculate_ndvi(image, nir_band="NIR", red_band="R")), # }, "COPERNICUS/S2_SR_HARMONIZED": { "scale": 10, "collection": ee.ImageCollection("COPERNICUS/S2_SR_HARMONIZED") .select( ["B4", "B8", "MSK_CLDPRB", "TCI_R", "TCI_G", "TCI_B"], ["Red", "NIR", "MSK_CLDPRB", "R", "G", "B"], ) .map(lambda image: calculate_ndvi(image, nir_band="NIR", red_band="Red")), }, # "LANDSAT/LC09/C02/T1_L2": { # "scale": 30, # "collection": ee.ImageCollection("LANDSAT/LC09/C02/T1_L2") # .select(["SR_B2", "SR_B3", "SR_B4", "SR_B5"], ["B", "G", "R", "NIR"]) # .map(lambda image: calculate_ndvi(image, nir_band="NIR", red_band="R")), # }, # "LANDSAT/LC08/C02/T1_L2": { # "scale": 30, # "collection": ee.ImageCollection("LANDSAT/LC08/C02/T1_L2") # .select(["SR_B2", "SR_B3", "SR_B4", "SR_B5"], ["B", "G", "R", "NIR"]) # .map(lambda image: calculate_ndvi(image, nir_band="NIR", red_band="R")), # }, # "LANDSAT/LE07/C02/T1_L2": { # "scale": 30, # "collection": ee.ImageCollection("LANDSAT/LE07/C02/T1_L2") # .select(["SR_B2", "SR_B3", "SR_B4", "SR_B5"], ["B", "G", "R", "NIR"]) # .map(lambda image: calculate_ndvi(image, nir_band="NIR", red_band="R")), # }, } st.session_state.satellites = satellites with open("wayback_imagery.json") as f: st.session_state.wayback_mapping = json.load(f) if "one_time_setup_done" not in st.session_state: one_time_setup() st.session_state.one_time_setup_done = True else: satellites = st.session_state.satellites wayback_mapping = st.session_state.wayback_mapping ############################################ # App ############################################ # Title # make title in center st.markdown( f"""

NDVI Explorer

""", unsafe_allow_html=True, ) # Input: Date and Cloud Cover col = st.columns(4) month_of_interest = col[0].selectbox("Month of Interest", list(range(1, 13)), index=11) start_year = col[1].selectbox("Start Year", list(range(2014, 2027)), index=6) end_year = col[2].selectbox("End Year", list(range(2014, 2027)), index=9) + 1 start_date = f"{start_year}-{month_of_interest:02d}" end_date = f"{end_year}-{month_of_interest:02d}" # Input: GeoJSON/KML file uploaded_file = st.file_uploader("Upload KML/GeoJSON file", type=["geojson", "kml"]) if uploaded_file is None: st.stop() gdf = preprocess_gdf(gpd.read_file(uploaded_file)) # Input: Geometry selected_geometry = st.selectbox("Select the geometry", gdf.Name.values) selected_geometry_gdf = gdf[gdf.Name == selected_geometry] selected_geometry = selected_geometry_gdf.iloc[0].geometry if selected_geometry.type != "Polygon": st.error( f"Selected geometry is of type {selected_geometry.type}. Please provide a polygon geometry." ) st.stop() # Derived Inputs selected_geometry = selected_geometry.__geo_interface__ ee_geometry = ee.Geometry(selected_geometry) _, lonlat = ee_geometry.centroid().getInfo().values() lon, lat = lonlat ee_feature_collection = ee.FeatureCollection(ee_geometry) feature_collection = geojson.FeatureCollection([{"type": "Feature", "geometry": selected_geometry, "properties": {"name": "Selected Geometry"}}]) x, y, zone, _ = utm.from_latlon(lat, lon) epsg = f"EPSG:326{zone}" selected_geometry_gdf = selected_geometry_gdf.to_crs(epsg) area = selected_geometry_gdf.area.values[0] perimeter = selected_geometry_gdf.length.values[0] stats_df = pd.DataFrame( { "Area (m^2)": [area], "Perimeter (m)": [perimeter], "Centroid (lat, lon)": [f"{lat}, {lon}"], "Points": np.array(selected_geometry['coordinates']).tolist(), } ) # visualize the geometry m = leaf_folium.Map() keys = list(wayback_mapping.keys()) latest_date = sorted(keys, key=lambda x: pd.to_datetime(x))[-1] m.add_tile_layer(wayback_mapping[latest_date], name=f"Esri Wayback - {latest_date}", attribution="Esri") m.add_geojson(feature_collection) write_info(f"Visual Esri Wayback Basemap - {latest_date}") m.to_streamlit() st.write(stats_df) # download option stats_csv = stats_df.to_csv() st.download_button("Download Geometry Stats", stats_csv, "geometry_stats.csv", "text/csv") # Input: Satellite Sources st.write("Select the satellite sources:") satellite_selected = {} for satellite in satellites: satellite_selected[satellite] = st.checkbox(satellite, value=True) # Submit submit = st.button("Submit", use_container_width=True) if submit: if not any(satellite_selected.values()): st.error("Please select at least one satellite source") st.stop() # Create month range # print(start_date, end_date) dates = pd.date_range(start_date, end_date, freq="Y").strftime("%Y-%m").tolist() # print(dates) # asjasndjasndj write_info( f"Start Date (inclusive): {start_date}, End Date (exclusive): {end_date}" ) result = {key: {} for key in satellites} for satellite, attrs in satellites.items(): if not satellite_selected[satellite]: continue with st.spinner(f"Processing {satellite} ..."): progress_bar = st.progress(0) for i, date in enumerate(dates): mosaic, mean_ndvi, cloud_proba = process_date(date, satellite) result[satellite][date] = { "mosaic": mosaic, "mean_ndvi": mean_ndvi, "cloud_mask_probability": cloud_proba, } progress_bar.progress((i + 1) / len(dates)) st.session_state.result = result if "result" in st.session_state: result = st.session_state.result df_list = [] for satellite, satellite_result in result.items(): satellite_df = pd.DataFrame(satellite_result).T satellite_df.rename( columns={ "mean_ndvi": f"NDVI_{satellite}", "mosaic": f"Mosaic_{satellite}", "cloud_mask_probability": f"Cloud_{satellite}", }, inplace=True, ) # drop rows with all NaN values satellite_df = satellite_df.dropna(how="all") # drop columns with all NaN values satellite_df = satellite_df.dropna(axis=1, how="all") df_list.append(satellite_df) # merge outer on index of the dataframes df = reduce( lambda left, right: pd.merge( left, right, left_index=True, right_index=True, how="outer" ), df_list, ) df.reset_index(inplace=True) df.index = pd.to_datetime(df["index"], format="%Y-%m") for column in df.columns: df[column] = pd.to_numeric(df[column], errors="ignore") df_numeric = df.select_dtypes(include=["float64"]) st.write(df_numeric) # give streamlit option to download the data csv = df_numeric.to_csv() st.download_button("Download Time Series", csv, "data.csv", "text/csv") fig = px.line(df, y=df_numeric.columns[0:1], title="Mean NDVI", markers=True) fig.update_yaxes(range=[-0.2, 1]) st.plotly_chart(fig) st.subheader("Visual Inspection") write_info(f"Centroid of the selected geometry (lat, lon): ({lat}, {lon})") cols = st.columns(2) df_dates = df.index.strftime("%Y-%m").tolist() with cols[0]: date_1 = st.selectbox("Month 1", df_dates, index=0) with cols[1]: date_2 = st.selectbox("Month 2", df_dates, index=len(df.index) - 1) for satellite in satellites: for col, date in zip(cols, [date_1, date_2]): if f"Mosaic_{satellite}" not in df.columns: continue mosaic = df.loc[pd.to_datetime(date), f"Mosaic_{satellite}"] with col: maps = [leaf_folium.Map(), leaf_folium.Map()] ndvi_layer = gee_folium.ee_tile_layer(mosaic, {"bands": ["NDVI"], "min": -0.2, "max": 1}) if satellite == "COPERNICUS/S2_SR_HARMONIZED": min_all = 0 max_all = 255 else: raise ValueError(f"Unknown satellite: {satellite}") visual_layer = gee_folium.ee_tile_layer(mosaic, {"bands": ["R", "G", "B"], "min": min_all, "max": max_all}) maps[0].add_layer( ndvi_layer, ) # add colorbar maps[0].add_colorbar(colors=["#000000", "#FFFFFF"], vmin=-0.2, vmax=1.0, caption="NDVI") maps[1].add_layer( visual_layer, ) for m, name in zip(maps, ["NDVI", "Visual"]): m.add_geojson(feature_collection) write_info(f"{name}: {satellite} - {date}") m.to_streamlit() for col, date in zip(cols, [date_1, date_2]): esri_date = min(wayback_mapping.keys(), key=lambda x: abs(pd.to_datetime(x) - pd.to_datetime(date))) with col: m = leaf_folium.Map() m.add_tile_layer(wayback_mapping[esri_date], name=f"Esri Wayback Imagery - {esri_date}", attribution="Esri") m.add_geojson(feature_collection) write_info(f"Visual Esri Wayback Basemap - {esri_date} (Closest to {date})") m.to_streamlit()