import os from datetime import datetime import ee import json import geemap import numpy as np import geemap.foliumap as gee_folium import leafmap.foliumap as leaf_folium import streamlit as st import pandas as pd import geopandas as gpd from shapely.ops import transform from functools import reduce import plotly.express as px import branca.colormap as cm import folium st.set_page_config(layout="wide") m = st.markdown( """ """, unsafe_allow_html=True, ) # Logo st.write( f"""
""", unsafe_allow_html=True, ) # Title # make title in center st.markdown( f"""

Vrinda (वृन्दा): Interactive Vegetation Index Analyzer

""", unsafe_allow_html=True, ) ############################################ # Hyperparameters ############################################ st.write("

User Inputs

", unsafe_allow_html=True) st.write("Select the vegetation indices to calculate:") all_veg_indices = ["NDVI", "EVI", "EVI2"] formulas = { "NDVI": r"$\frac{NIR - Red}{NIR + Red}$", "EVI": r"$G \times \frac{NIR - Red}{NIR + C1 \times Red - C2 \times Blue + L}$", "EVI2": r"$G \times \frac{NIR - Red}{NIR + L + C \times Red}$", } defaults = [True, False, False] veg_indices = [] for veg_index, default in zip(all_veg_indices, defaults): if st.checkbox(f"{veg_index} = {formulas[veg_index]}", value=default): veg_indices.append(veg_index) with st.expander("EVI/EVI2 Parameters"): st.write("Select the parameters for the EVI/EVI2 calculation (default is as per EVI's Wikipedia page)") cols = st.columns(5) evi_vars = {} for col, name, default in zip(cols, ["G", "C1", "C2", "L", "C"], [2.5, 6, 7.5, 1, 2.4]): value = col.number_input(f"{name}", value=default) evi_vars[name] = value ############################################ # Functions ############################################ # Function of find best suited statewise EPSG code def find_best_epsg(geometry): if geometry.geom_type == 'Polygon': centroid = geometry.centroid else: st.error("Geometry is not Polygon !!!") st.stop() common_epsg_codes = [7756, #Andhra Pradesh 7757, #Arunachal Pradesh 7758, #Assam 7759, #Bihar 7760, #Delhi 7761, #Gujarat 7762, #Haryana 7763, #HimachalPradesh 7764, #JammuAndKashmir 7765, #Jharkhand 7766, #MadhyaPradesh 7767, #Maharastra 7768, #Manipur 7769, #Meghalaya 7770, #Nagaland 7772, #Orissa 7773, #Punjab 7774, #Rajasthan 7775, #UttarPradesh 7776, #Uttaranchal 7777, #A&N 7778, #Chattisgarh 7779, #Goa 7780, #Karnataka 7781, #Kerala 7782, #Lakshadweep 7783, #Mizoram 7784, #Sikkim 7785, #TamilNadu 7786, #Tripura 7787, #WestBengal 7771, #NE India 7755, #India ] for epsg in common_epsg_codes: crs = pyproj.CRS.from_epsg(epsg) area_of_use = crs.area_of_use.bounds # Get the bounding box of the area of use #check if centroid of polygon lies in teh bounds of the crs if (area_of_use[0] <= centroid.x <= area_of_use[2]) and (area_of_use[1] <= centroid.y <= area_of_use[3]): return epsg # Return the best suitable EPSG code def daterange_str_to_dates(daterange_str): start_date, end_date = daterange_str.split("-") start_date = pd.to_datetime(start_date) end_date = pd.to_datetime(end_date) return start_date, end_date def daterange_dates_to_str(start_date, end_date): return f"{start_date.strftime('%Y/%m/%d')}-{end_date.strftime('%Y/%m/%d')}" def daterange_str_to_year(daterange_str): start_date, _ = daterange_str.split("-") year = pd.to_datetime(start_date).year return year def shape_3d_to_2d(shape): if shape.has_z: return transform(lambda x, y, z: (x, y), shape) else: return shape def preprocess_gdf(gdf): gdf["geometry"] = gdf["geometry"].apply(shape_3d_to_2d) gdf["geometry"] = gdf.buffer(0) # Fixes some invalid geometries return gdf def to_best_crs(gdf): best_epsg_code = find_best_epsg(gdf["geometry"].iloc[0]) gdf = gdf.to_crs(epsg=best_epsg_code) return gdf def is_valid_polygon(geometry_gdf): geometry = geometry_gdf.geometry.item() return (geometry.type == "Polygon") and (not geometry.is_empty) def add_geometry_to_maps(map_list, opacity=0.0): for m in map_list: m.add_gdf( buffer_geometry_gdf, layer_name="Geometry Buffer", style_function=lambda x: {"color": "red", "fillOpacity": opacity, "fillColor": "red"}, ) m.add_gdf( geometry_gdf, layer_name="Geometry", style_function=lambda x: {"color": "blue", "fillOpacity": opacity, "fillColor": "blue"}, ) def get_dem_slope_maps(buffer_ee_geometry): # Create the map for DEM dem_map = gee_folium.Map(controls={'scale':'bottomleft'}) dem_map.add_tile_layer( wayback_mapping[latest_date], name=f"Esri Wayback - {latest_date.replace('-', '/')}", attribution="Esri" ) dem_layer = ee.Image("USGS/SRTMGL1_003") # Set the target resolution to 10 meters target_resolution = 10 dem_layer = ( dem_layer.resample("bilinear").reproject(crs="EPSG:4326", scale=target_resolution).clip(buffer_ee_geometry) ) # Generate contour lines using elevation thresholds terrain = ee.Algorithms.Terrain(dem_layer) contour_interval = 1 contours = ( terrain.select("elevation").subtract(terrain.select("elevation").mod(contour_interval)).rename("contours") ) # Calculate the minimum and maximum values stats = contours.reduceRegion(reducer=ee.Reducer.minMax(), scale=10, maxPixels=1e13) max_value = stats.get("contours_max").getInfo() min_value = stats.get("contours_min").getInfo() vis_params = {"min": min_value, "max": max_value, "palette": ["blue", "green", "yellow", "red"]} dem_map.addLayer(contours, vis_params, "Contours") # Create a colormap cmap = cm.LinearColormap(colors=vis_params["palette"], vmin=vis_params["min"], vmax=vis_params["max"]) tick_size = int((max_value-min_value)/4) dem_map.add_legend(title="Elevation (m)", legend_dict={'{}-{} m'.format(min_value, min_value+tick_size): '#0000FF', '{}-{} m'.format(min_value+tick_size, min_value+2*tick_size): '#00FF00', '{}-{} m'.format(min_value+2*tick_size, min_value+3*tick_size): '#FFFF00', '{}-{} m'.format(min_value+3*tick_size, max_value): '#FF0000'}, position='bottomright') # Create the map for Slope slope_map = gee_folium.Map(controls={'scale':'bottomleft'}) slope_map.add_tile_layer( wayback_mapping[latest_date], name=f"Esri Wayback - {latest_date.replace('-', '/')}", attribution="Esri" ) # Calculate slope from the DEM slope_layer = ( ee.Terrain.slope( ee.Image("USGS/SRTMGL1_003").resample("bilinear").reproject(crs="EPSG:4326", scale=target_resolution) ) .clip(buffer_ee_geometry) .rename("slope") ) # Calculate the minimum and maximum values stats = slope_layer.reduceRegion(reducer=ee.Reducer.minMax(), scale=10, maxPixels=1e13) max_value = int(stats.get("slope_max").getInfo()) min_value = int(stats.get("slope_min").getInfo()) vis_params = {"min": min_value, "max": max_value, "palette": ["blue", "green", "yellow", "red"]} slope_map.addLayer(slope_layer, vis_params, "Slope Layer") # Create a colormap colormap = cm.LinearColormap(colors=vis_params["palette"], vmin=vis_params["min"], vmax=vis_params["max"]) tick_size=int((max_value-min_value)/4) slope_map.add_legend(title="Slope (degrees)", legend_dict={'{}-{} deg'.format(min_value, min_value+tick_size): '#0000FF', '{}-{} deg'.format(min_value+tick_size, min_value+2*tick_size): '#00FF00', '{}-{} deg'.format(min_value+2*tick_size, min_value+3*tick_size): '#FFFF00', '{}-{} deg'.format(min_value+3*tick_size, max_value): '#FF0000'}, position='bottomright') return dem_map, slope_map def add_indices(image, nir_band, red_band, blue_band): # Add negative cloud neg_cloud = image.select("MSK_CLDPRB").multiply(-1).rename("Neg_MSK_CLDPRB") nir = image.select(nir_band).divide(10000) red = image.select(red_band).divide(10000) blue = image.select(blue_band).divide(10000) numerator = nir.subtract(red) ndvi = (numerator).divide(nir.add(red)).rename("NDVI").clamp(-1, 1) # EVI formula taken from: https://en.wikipedia.org/wiki/Enhanced_vegetation_index denominator = nir.add(red.multiply(evi_vars["C1"])).subtract(blue.multiply(evi_vars["C2"])).add(evi_vars["L"]) evi = numerator.divide(denominator).multiply(evi_vars["G"]).rename("EVI").clamp(-1, 1) evi2 = ( numerator.divide(nir.add(evi_vars["L"]).add(red.multiply(evi_vars["C"]))) .multiply(evi_vars["G"]) .rename("EVI2") .clamp(-1, 1) ) return image.addBands([neg_cloud, ndvi, evi, evi2]) def get_histogram(image, geometry, bins): # Get image values as a list values = image.reduceRegion( reducer=ee.Reducer.toList(), geometry=geometry, scale=10, maxPixels=1e13 ).get('NDVI') # Convert values to a NumPy array values_array = np.array(values.getInfo()) # Compute the histogram on bins hist, bin_edges = np.histogram(values_array, bins=bins) return hist, bin_edges def process_date(daterange, satellite, veg_indices): start_date, end_date = daterange daterange_str = daterange_dates_to_str(start_date, end_date) prefix = f"Processing {satellite} - {daterange_str}" try: attrs = satellites[satellite] collection = attrs["collection"] collection = collection.filterBounds(buffer_ee_geometry) collection = collection.filterDate(start_date, end_date) bucket = {} for veg_index in veg_indices: mosaic_veg_index = collection.qualityMosaic(veg_index) fc = geemap.zonal_stats( mosaic_veg_index, ee_feature_collection, scale=attrs["scale"], return_fc=True ).getInfo() mean_veg_index = fc["features"][0]["properties"][veg_index] bucket[veg_index] = mean_veg_index fc = geemap.zonal_stats( mosaic_veg_index, buffer_ee_feature_collection, scale=attrs["scale"], return_fc=True ).getInfo() buffer_mean_veg_index = fc["features"][0]["properties"][veg_index] bucket[f"{veg_index}_buffer"] = buffer_mean_veg_index bucket[f"{veg_index}_ratio"] = mean_veg_index / buffer_mean_veg_index bucket[f"mosaic_{veg_index}"] = mosaic_veg_index # Get median mosaic bucket["mosaic_visual_max_ndvi"] = collection.qualityMosaic("NDVI") bucket["mosaic_visual_median"] = collection.median() bucket["image_visual_least_cloud"] = collection.sort("CLOUDY_PIXEL_PERCENTAGE").first() if satellite == "COPERNICUS/S2_SR_HARMONIZED": cloud_mask_probability = fc["features"][0]["properties"]["MSK_CLDPRB"] / 100 else: cloud_mask_probability = None bucket["Cloud (0 to 1)"] = cloud_mask_probability result_df.loc[daterange_str, list(bucket.keys())] = list(bucket.values()) count = collection.size().getInfo() suffix = f" - Processed {count} images" write_info(f"{prefix}{suffix}") except Exception as e: print(e) suffix = f" - Imagery not available" write_info(f"{prefix}{suffix}") def write_info(info): st.write(f"{info}", unsafe_allow_html=True) ############################################ # One time setup ############################################ def one_time_setup(): credentials_path = os.path.expanduser("~/.config/earthengine/credentials") if os.path.exists(credentials_path): pass # Earth Engine credentials already exist elif "EE" in os.environ: # write the credentials to the file ee_credentials = os.environ.get("EE") os.makedirs(os.path.dirname(credentials_path), exist_ok=True) with open(credentials_path, "w") as f: f.write(ee_credentials) else: raise ValueError( f"Earth Engine credentials not found at {credentials_path} or in the environment variable 'EE'" ) ee.Initialize() satellites = { "COPERNICUS/S2_SR_HARMONIZED": { "scale": 10, "collection": ee.ImageCollection("COPERNICUS/S2_SR_HARMONIZED") .select( ["B2", "B4", "B8", "MSK_CLDPRB", "TCI_R", "TCI_G", "TCI_B"], ["Blue", "Red", "NIR", "MSK_CLDPRB", "R", "G", "B"], ) .map(lambda image: add_indices(image, nir_band="NIR", red_band="Red", blue_band="Blue")), }, } st.session_state.satellites = satellites with open("wayback_imagery.json") as f: st.session_state.wayback_mapping = json.load(f) if "one_time_setup_done" not in st.session_state: one_time_setup() st.session_state.one_time_setup_done = True satellites = st.session_state.satellites wayback_mapping = st.session_state.wayback_mapping ############################################ # App ############################################ # Input: Satellite Sources st.write("Select the satellite sources:") satellite_selected = {} for satellite in satellites: satellite_selected[satellite] = st.checkbox(satellite, value=True, disabled=True) # Date range input max_year = datetime.now().year jan_1 = pd.to_datetime(f"{max_year}/01/01", format="%Y/%m/%d") dec_31 = pd.to_datetime(f"{max_year}/12/31", format="%Y/%m/%d") nov_15 = pd.to_datetime(f"{max_year}/11/15", format="%Y/%m/%d") dec_15 = pd.to_datetime(f"{max_year}/12/15", format="%Y/%m/%d") input_daterange = st.date_input( "Date Range (Ignore year. App will compute indices for all possible years)", (nov_15, dec_15), jan_1, dec_31 ) min_year = int(st.number_input("Minimum Year", value=2019, min_value=2015, step=1)) max_year = int(st.number_input("Maximum Year", value=max_year, min_value=2015, step=1)) # Input: GeoJSON/KML file file_url = st.query_params.get("file_url", None) if file_url is None: file_url = st.file_uploader("Upload KML/GeoJSON file", type=["geojson", "kml", "shp"]) if file_url is None: st.stop() if isinstance(file_url, str): if file_url.startswith("https://drive.google.com/file/d/"): ID = file_url.replace("https://drive.google.com/file/d/", "").split("/")[0] file_url = f"https://drive.google.com/uc?id={ID}" elif file_url.startswith("https://drive.google.com/open?id="): ID = file_url.replace("https://drive.google.com/open?id=", "") file_url = f"https://drive.google.com/uc?id={ID}" buffer = st.number_input("Buffer (m)", value=50, min_value=0, step=1) input_gdf = preprocess_gdf(gpd.read_file(file_url)) if len(input_gdf) > 1: st.warning(f"Only the first polygon in the KML will be processed; all other geometries will be ignored.") # input_geometry_idx = st.selectbox("Select the geometry", input_gdf.index, format_func=format_fn) for i in range(len(input_gdf)): geometry_gdf = input_gdf[input_gdf.index == i] if is_valid_polygon(geometry_gdf): break else: st.error(f"No polygon found inside KML. Please check the KML file.") st.stop() geometry_gdf = to_best_crs(geometry_gdf) outer_geometry_gdf = geometry_gdf.copy() outer_geometry_gdf["geometry"] = outer_geometry_gdf["geometry"].buffer(buffer) buffer_geometry_gdf = ( outer_geometry_gdf.difference(geometry_gdf).reset_index().drop(columns="index") ) # reset index forces GeoSeries to GeoDataFrame buffer_geometry_gdf["Name"] = "Buffer" # Derived Inputs ee_geometry = ee.Geometry(geometry_gdf.to_crs(4326).geometry.item().__geo_interface__) ee_feature_collection = ee.FeatureCollection(ee_geometry) buffer_ee_geometry = ee.Geometry(buffer_geometry_gdf.to_crs(4326).geometry.item().__geo_interface__) buffer_ee_feature_collection = ee.FeatureCollection(buffer_ee_geometry) outer_ee_geometry = ee.Geometry(outer_geometry_gdf.to_crs(4326).geometry.item().__geo_interface__) outer_ee_feature_collection = ee.FeatureCollection(outer_ee_geometry) # visualize the geometry m = leaf_folium.Map() keys = list(wayback_mapping.keys()) latest_date = sorted(keys, key=lambda x: pd.to_datetime(x))[-1] m.add_tile_layer( wayback_mapping[latest_date], name=f"Esri Wayback - {latest_date.replace('-', '/')}", attribution="Esri" ) # m.add_layer(buffer_ee_feature_collection) add_geometry_to_maps([m], opacity=0.3) write_info( f"""
Latest Esri Imagery - {latest_date.replace('-', '/')}
""" ) m.to_streamlit() # Generate stats stats_df = pd.DataFrame( { "Area (m^2)": geometry_gdf.area.item(), "Perimeter (m)": geometry_gdf.length.item(), "Points": json.loads(geometry_gdf.to_crs(4326).to_json())["features"][0]["geometry"]["coordinates"], } ) st.write("

Geometry Metrics

", unsafe_allow_html=True) st.markdown( f"""| Metric | Value | | --- | --- | | Area (m^2) | {stats_df['Area (m^2)'].item():.2f} m^2 = {stats_df['Area (m^2)'].item()/10000:.2f} ha | | Perimeter (m) | {stats_df['Perimeter (m)'].item():.2f} m | """ ) stats_csv = stats_df.to_csv(index=False) st.download_button("Download Geometry Metrics", stats_csv, "geometry_metrics.csv", "text/csv", use_container_width=True) # Submit submit = st.button("Calculate Vegetation Indices", use_container_width=True) st.write("

Results

", unsafe_allow_html=True) if submit: if not any(satellite_selected.values()): st.error("Please select at least one satellite source") st.stop() # Create range start_day = input_daterange[0].day start_month = input_daterange[0].month end_day = input_daterange[1].day end_month = input_daterange[1].month dates = [] for year in range(min_year, max_year + 1): start_date = pd.to_datetime(f"{year}-{start_month:02d}-{start_day:02d}") end_date = pd.to_datetime(f"{year}-{end_month:02d}-{end_day:02d}") dates.append((start_date, end_date)) result_df = pd.DataFrame() for satellite, attrs in satellites.items(): if not satellite_selected[satellite]: continue with st.spinner(f"Processing {satellite} ..."): progress_bar = st.progress(0) for i, daterange in enumerate(dates): process_date(daterange, satellite, veg_indices) progress_bar.progress((i + 1) / len(dates)) st.session_state.result = result_df print("Printing result...") if "result" in st.session_state: result_df = st.session_state.result print(result_df.columns) # drop rows with all NaN values result_df = result_df.dropna(how="all") # drop columns with all NaN values result_df = result_df.dropna(axis=1, how="all") print(result_df.columns) print(result_df.head(2)) # df.reset_index(inplace=True) # df.index = pd.to_datetime(df["index"], format="%Y-%m") for column in result_df.columns: result_df[column] = pd.to_numeric(result_df[column], errors="ignore") df_numeric = result_df.select_dtypes(include=["float64"]) st.write(df_numeric) df_numeric_csv = df_numeric.to_csv(index=True) st.download_button( "Download Time Series Data", df_numeric_csv, "vegetation_indices.csv", "text/csv", use_container_width=True ) df_numeric.index = [daterange_str_to_year(daterange) for daterange in df_numeric.index] for veg_index in veg_indices: fig = px.line(df_numeric, y=[veg_index, f"{veg_index}_buffer", f"{veg_index}_ratio"], markers=True) fig.update_layout(xaxis=dict(tickvals=df_numeric.index, ticktext=df_numeric.index)) st.plotly_chart(fig) st.write( "

DEM and Slope from SRTM at 30m resolution

", unsafe_allow_html=True, ) cols = st.columns(2) dem_map, slope_map = get_dem_slope_maps(ee.Geometry(geometry_gdf.to_crs(4326).geometry.item().__geo_interface__)) for col, param_map, title in zip(cols, [dem_map, slope_map], ["DEM Map", "Slope Map"]): with col: param_map.add_gdf( geometry_gdf, layer_name="Geometry", style_function=lambda x: {"color": "blue", "fillOpacity": 0.0, "fillColor": "blue"}, ) write_info(f"""
{title}
""") param_map.addLayerControl() param_map.to_streamlit() st.write( "

Visual Comparison between Two Years

", unsafe_allow_html=True ) cols = st.columns(2) with cols[0]: year_1 = st.selectbox("Year 1", result_df.index, index=0, format_func=lambda x: daterange_str_to_year(x)) with cols[1]: year_2 = st.selectbox( "Year 2", result_df.index, index=len(result_df.index) - 1, format_func=lambda x: daterange_str_to_year(x) ) vis_params = {"min": 0, "max": 1, "palette": ["white", "green"]} # Example visualisation for Sentinel-2 # Create a colormap and name it as NDVI colormap = cm.LinearColormap(colors=vis_params["palette"], vmin=vis_params["min"], vmax=vis_params["max"]) for veg_index in veg_indices: st.write(f"

{veg_index}

", unsafe_allow_html=True) cols = st.columns(2) for col, daterange_str in zip(cols, [year_1, year_2]): mosaic = result_df.loc[daterange_str, f"mosaic_{veg_index}"] with col: m = gee_folium.Map() m.add_tile_layer(wayback_mapping[latest_date], name=f"Esri Wayback - {latest_date.replace('-', '/')}", attribution="Esri") veg_index_layer = gee_folium.ee_tile_layer(mosaic, {"bands": [veg_index], "min": 0, "max": 1}) if satellite == "COPERNICUS/S2_SR_HARMONIZED": min_all = 0 max_all = 255 else: raise ValueError(f"Unknown satellite: {satellite}") if veg_index=='NDVI': bins=[-1, 0, 0.1, 0.2, 0.3, 0.4, 0.5, 1] histogram, bin_edges = get_histogram(mosaic.select(veg_index), ee_geometry, bins) total_pix = np.sum(histogram) formatted_histogram = [f"{h*100/total_pix:.2f}" for h in histogram] print(histogram, bin_edges, bins, formatted_histogram) m.add_legend(title="NDVI Class/Value", legend_dict={'<0:Waterbody ({}%)'.format(formatted_histogram[0]): '#0000FF', '0-0.1: Open ({}%)'.format(formatted_histogram[1]): '#FF0000', '0.1-0.2: Highly Degraded ({}%)'.format(formatted_histogram[2]):'#FFFF00', '0.2-0.3: Degraded ({}%)'.format(formatted_histogram[3]): '#FFA500', '0.3-0.4: Moderately Degraded ({}%)'.format(formatted_histogram[4]): '#00FE00', '0.4-0.5: Dense ({}%)'.format(formatted_histogram[5]): '#00A400', '>0.5: Very Dense ({}%)'.format(formatted_histogram[6]): '#006D00', }, position='bottomright') ndvi_vis_params = {'min': -0.1, 'max': 0.6, 'palette': ['#0000FF', '#FF0000', '#FFFF00', '#FFA500', '#00FE00', '#00A400', '#006D00']} m.add_layer(mosaic.select(veg_index).clip(outer_ee_geometry), ndvi_vis_params) # add colorbar # m.add_colorbar(colors=["#000000", "#00FF00"], vmin=0.0, vmax=1.0) if veg_index!='NDVI': m.add_layer(mosaic.select(veg_index).clip(outer_ee_geometry), vis_params) m.add_child(colormap) add_geometry_to_maps([m]) m.to_streamlit() for name, key in zip( ["RGB (Least Cloud Tile Crop)", "RGB (Max NDVI Mosaic)", "RGB (Median Mosaic)"], ["image_visual_least_cloud", "mosaic_visual_max_ndvi", "mosaic_visual_median"], ): st.write(f"

{name}

", unsafe_allow_html=True) cols = st.columns(2) for col, daterange_str in zip(cols, [year_1, year_2]): start_date, end_date = daterange_str_to_dates(daterange_str) mid_date = start_date + (end_date - start_date) / 2 esri_date = min(wayback_mapping.keys(), key=lambda x: abs(pd.to_datetime(x) - mid_date)) with col: m = gee_folium.Map() visual_mosaic = result_df.loc[daterange_str, key] # visual_layer = gee_folium.ee_tile_layer(mosaic, {"bands": ["R", "G", "B"], "min": min_all, "max": max_all}) m.add_layer(visual_mosaic.select(["R", "G", "B"])) add_geometry_to_maps([m]) m.to_streamlit() st.write("

Esri RGB Imagery

", unsafe_allow_html=True) cols = st.columns(2) for col, daterange_str in zip(cols, [year_1, year_2]): start_date, end_date = daterange_str_to_dates(daterange_str) mid_date = start_date + (end_date - start_date) / 2 esri_date = min(wayback_mapping.keys(), key=lambda x: abs(pd.to_datetime(x) - mid_date)) with col: m = leaf_folium.Map() m.add_tile_layer(wayback_mapping[esri_date], name=f"Esri Wayback Imagery - {esri_date}", attribution="Esri") add_geometry_to_maps([m]) write_info( f"""
Esri Imagery - {esri_date.replace('-', '/')}
""" ) m.to_streamlit()