import json import platform import subprocess from pathlib import Path import cv2 import numpy as np from loguru import logger from tqdm import tqdm import face_detection from nota_wav2lip.util import FFMPEG_LOGGING_MODE detector = face_detection.FaceAlignment(face_detection.LandmarksType._2D, flip_input=False, device='cpu') PADDING = [0, 10, 0, 0] def get_smoothened_boxes(boxes, T): for i in range(len(boxes)): window = boxes[len(boxes) - T:] if i + T > len(boxes) else boxes[i:i + T] boxes[i] = np.mean(window, axis=0) return boxes def face_detect(images, pads, no_smooth=False, batch_size=1): predictions = [] images_array = [cv2.imread(str(image)) for image in images] for i in tqdm(range(0, len(images_array), batch_size)): predictions.extend(detector.get_detections_for_batch(np.array(images_array[i:i + batch_size]))) results = [] pady1, pady2, padx1, padx2 = pads for rect, image_array in zip(predictions, images_array): if rect is None: cv2.imwrite('temp/faulty_frame.jpg', image_array) # check this frame where the face was not detected. raise ValueError('Face not detected! Ensure the video contains a face in all the frames.') y1 = max(0, rect[1] - pady1) y2 = min(image_array.shape[0], rect[3] + pady2) x1 = max(0, rect[0] - padx1) x2 = min(image_array.shape[1], rect[2] + padx2) results.append([x1, y1, x2, y2]) boxes = np.array(results) bbox_format = "(y1, y2, x1, x2)" if not no_smooth: boxes = get_smoothened_boxes(boxes, T=5) outputs = { 'bbox': {str(image_path): tuple(map(int, (y1, y2, x1, x2))) for image_path, (x1, y1, x2, y2) in zip(images, boxes)}, 'format': bbox_format } return outputs def save_video_frame(video_path, output_dir=None): video_path = Path(video_path) output_dir = output_dir if output_dir is not None else video_path.with_suffix('') output_dir.mkdir(exist_ok=True) return subprocess.call( f"ffmpeg {FFMPEG_LOGGING_MODE['ERROR']} -y -i {video_path} -r 25 -f image2 {output_dir}/%05d.jpg", shell=platform.system() != 'Windows' ) def save_audio_file(video_path, output_path=None): video_path = Path(video_path) output_path = output_path if output_path is not None else video_path.with_suffix('.wav') subprocess.call( f"ffmpeg {FFMPEG_LOGGING_MODE['ERROR']} -y -i {video_path} -vn -acodec pcm_s16le -ar 16000 -ac 1 {output_path}", shell=platform.system() != 'Windows' ) def save_bbox_file(video_path, bbox_dict, output_path=None): video_path = Path(video_path) output_path = output_path if output_path is not None else video_path.with_suffix('.json') with open(output_path, 'w') as f: json.dump(bbox_dict, f, indent=4) def get_preprocessed_data(video_path: Path): video_path = Path(video_path) image_sequence_dir = video_path.with_suffix('') audio_path = video_path.with_suffix('.wav') face_bbox_json_path = video_path.with_suffix('.json') logger.info(f"Save 25 FPS video frames as image files ... will be saved at {video_path}") save_video_frame(video_path=video_path, output_dir=image_sequence_dir) logger.info(f"Save the audio as wav file ... will be saved at {audio_path}") save_audio_file(video_path=video_path, output_path=audio_path) # bonus # Load images, extract bboxes and save the coords(to directly use as array indicies) logger.info(f"Extract face boxes and save the coords with json format ... will be saved at {face_bbox_json_path}") results = face_detect(sorted(image_sequence_dir.glob("*.jpg")), pads=PADDING) save_bbox_file(video_path, results, output_path=face_bbox_json_path)