import os import configparser from typing import List, Union, Optional, Any, Dict, cast import re import sys import time import json import asyncio import aiohttp import requests import threading import pandas as pd from langchain import SerpAPIWrapper, LLMChain from langchain.agents import Tool, AgentType, AgentExecutor, LLMSingleActionAgent, AgentOutputParser from langchain.callbacks.manager import Callbacks from langchain.callbacks.streaming_stdout_final_only import FinalStreamingStdOutCallbackHandler from langchain.chat_models import ChatOpenAI from langchain.chains import LLMChain, SimpleSequentialChain from langchain.chains.query_constructor.ir import StructuredQuery from langchain.chains.query_constructor.base import AttributeInfo from langchain.document_loaders import DataFrameLoader, SeleniumURLLoader from langchain.embeddings import OpenAIEmbeddings from langchain.indexes import VectorstoreIndexCreator from langchain.prompts import PromptTemplate, StringPromptTemplate, load_prompt, BaseChatPromptTemplate from langchain.llms import OpenAI from langchain.retrievers.self_query.base import SelfQueryRetriever from langchain.schema import AgentAction, AgentFinish, HumanMessage, Document from langchain.vectorstores import Chroma import gradio as gr # config = configparser.ConfigParser() # config.read('./secrets.ini') # openai_api_key = config['OPENAI']['OPENAI_API_KEY'] # serper_api_key = config['SERPER']['SERPER_API_KEY'] # serp_api_key = config['SERPAPI']['SERPAPI_API_KEY'] # kakao_api_key = config['KAKAO_MAP']['KAKAO_API_KEY'] # huggingface_token = config['HUGGINGFACE']['HUGGINGFACE_TOKEN'] # os.environ.update({'OPENAI_API_KEY': openai_api_key}) # os.environ.update({'SERPER_API_KEY': serper_api_key}) # os.environ.update({'SERPAPI_API_KEY': serp_api_key}) # os.environ.update({'KAKAO_API_KEY': kakao_api_key}) # os.environ.update({'HUGGINGFACE_TOKEN': huggingface_token}) huggingface_token = os.getenv('HUGGINGFACE_TOKEN') kakao_api_key = os.getenv('KAKAO_API_KEY') ### Load wine database json df = pd.read_json('./data/unified_wine_data.json', encoding='utf-8', lines=True) ### Prepare Langchain Tool #### Tool1: Wine database 1 df['page_content'] = '' columns = ['name', 'pairing'] for column in columns: if column != 'page_content': df['page_content'] += column + ':' + df[column].astype(str) + ',' columns = ['rating', 'price', 'body', 'sweetness', 'alcohol', 'acidity', 'tannin'] for idx in df.index: for column in columns: if type(df[column][idx]) == str: df[column][idx] = df[column][idx].replace(',', '') df[column][idx] = float(df[column][idx]) if df[column][idx] != '' else -1 loader =DataFrameLoader(data_frame=df, page_content_column='page_content') docs = loader.load() embeddings = OpenAIEmbeddings() # 아래는 wine database1에 metadata_field Attribute이다. 아래를 기준으로 서치를 진행하게 된다. metadata_field_info = [ AttributeInfo( name="body", description="1-5 rating for the body of wine", type="int", ), AttributeInfo( name="tannin", description="1-5 rating for the tannin of wine", type="int", ), AttributeInfo( name="sweetness", description="1-5 rating for the sweetness of wine", type="int", ), AttributeInfo( name="alcohol", description="1-5 rating for the alcohol of wine", type="int", ), AttributeInfo( name="price", description="The price of the wine", type="int", ), AttributeInfo( name="rating", description="1-5 rating for the wine", type="float" ), AttributeInfo( name="wine_type", description="The type of wine. It can be '레드', '로제', '스파클링', '화이트', '디저트', '주정강화'", type="string" ), AttributeInfo( name="country", description="The country of wine. It can be '기타 신대륙', '기타구대륙', '뉴질랜드', '독일', '미국', '스페인', '아르헨티나', '이탈리아', '칠레', '포루투칼', '프랑스', '호주'", type="float" ), ] wine_vectorstore = Chroma.from_documents(docs, embeddings) document_content_description = "A database of wines. 'name' and 'pairing' must be included in the query, and 'Body', 'Tannin', 'Sweetness', 'Alcohol', 'Price', 'Rating', 'Wine_Type', and 'Country' can be included in the filter. query and filter must be form of 'key: value'. For example, query: 'name: 돔페리뇽, pairing:육류'." llm = OpenAI(temperature=0) class CustomSelfQueryRetriever(SelfQueryRetriever): async def aget_relevant_documents(self, query: str, callbacks: Callbacks = None) -> List[Document]: inputs = self.llm_chain.prep_inputs({"query": query}) structured_query = cast( StructuredQuery, self.llm_chain.predict_and_parse(callbacks=callbacks, **inputs), ) if self.verbose: print(structured_query) new_query, new_kwargs = self.structured_query_translator.visit_structured_query( structured_query ) if structured_query.limit is not None: new_kwargs["k"] = structured_query.limit if self.use_original_query: new_query = query search_kwargs = {**self.search_kwargs, **new_kwargs} docs = self.vectorstore.search(new_query, self.search_type, **search_kwargs) return docs wine_retriever = CustomSelfQueryRetriever.from_llm( llm, wine_vectorstore, document_content_description, metadata_field_info, verbose=True ) # Added missing closing parenthesis #### Tool2: Wine bar database df = pd.read_json('./data/wine_bar.json', encoding='utf-8', lines=True) df['page_content'] = '' columns = ['summary'] for column in columns: if column != 'page_content': df['page_content'] += df[column].astype(str) + ',' df = df.drop(columns=['review']) loader =DataFrameLoader(data_frame=df, page_content_column='page_content') docs = loader.load() embeddings = OpenAIEmbeddings() wine_bar_vectorstore = Chroma.from_documents(docs, embeddings) wine_bar_vectorstore.similarity_search_with_score('여자친구랑 갈만한 와인바', k=5) metadata_field_info = [ AttributeInfo( name="name", description="The name of the wine bar", type="str", ), AttributeInfo( name="rating", description="1-5 rating for the wine bar", type="float" ), AttributeInfo( name="district", description="The district of the wine bar.", type="str", ), ] document_content_description = "Database of a winebar" llm = OpenAI(temperature=0) wine_bar_retriever = CustomSelfQueryRetriever.from_llm( llm, wine_bar_vectorstore, document_content_description, metadata_field_info=metadata_field_info, verbose=True ) # Added missing closing parenthesis #### Tool3: Search in Google search = SerpAPIWrapper() #### Tool4: Kakao Map API class KakaoMap: def __init__(self): self.url = 'https://dapi.kakao.com/v2/local/search/keyword.json' self.headers = {"Authorization": f"KakaoAK {kakao_api_key}"} async def arun(self, query): async with aiohttp.ClientSession() as session: params = {'query': query,'page': 1} async with session.get(self.url, params=params, headers=self.headers) as response: places = await response.json() address = places['documents'][0]['address_name'] if not address.split()[0].startswith('서울'): return {'district': 'not in seoul'} else: return {'district': address.split()[1]} def run(self, query): params = {'query': query,'page': 1} places = requests.get(self.url, params=params, headers=self.headers).json() address = places['documents'][0]['address_name'] if not address.split()[0].startswith('서울'): return {'district': 'not in seoul'} else: return {'district': address.split()[1]} kakao_map = KakaoMap() tools = [ Tool( name="Wine database", func=wine_retriever.get_relevant_documents, coroutine=wine_retriever.aget_relevant_documents, description=""" Database about the wines in wine store. You can search wines with the following attributes: - price: The price range of the wine. You have to specify greater than and less than. - rating: 1-5 rating float for the wine. You have to specify greater than and less than. - wine_type: The type of wine. It can be '레드', '로제', '스파클링', '화이트', '디저트', '주정강화' - name: The name of wine. - pairing: The food pairing of wine. The form of Action Input must be 'key1: value1, key2: value2, ...'. For example, to search for wines with a rating of less than 3 points, a price range of 50000원 or more, and a meat pairing, enter 'rating: gt 0 lt 3, price: gt 50000, pairing: 고기'. -------------------------------------------------- You can get the following attributes: - url: Wine purchase site URL. - vivino_link: Vivino link of wine. - flavor_description - site_name: Wine purchase site name. - name: The name of wine in korean. - en_name: The name of wine in english. - price: The price of wine in 원. - rating: 1-5 vivino rating. - wine_type: The type of wine. - pairing: The food pairing of wine. - pickup_location: Offline stores where you can purchase wine - img_url - country - body - tannin - sweetness - acidity - alcohol - grape The form of Desired Outcome must be 'key1, key2, ...'. For example to get the name and price of wine, enter 'name, price'. """ ), Tool( name = "Wine bar database", func=wine_bar_retriever.get_relevant_documents, coroutine=wine_bar_retriever.aget_relevant_documents, description="Database about the winebars in Seoul. It should be the first thing you use when looking for information about a wine bar." """ - query: The query of winebar. You can search wines with review data like mood or something. - name: The name of winebar. - price: The average price point of a wine bar. - rating: 1-5 rating float for the wine bar. - district: The district of wine bar. Input district must be korean. For example, if you want to search for wines in Gangnam, enter 'district: 강남구' The form of Action Input must be 'key1: value1, key2: value2, ...'. -------------------------------------------------- You can get the following attributes: - name: The name of winebar. - url: Wine purchase site URL. - rating: 1-5 망고플레이트(맛집검색 앱) rating. - summary: Summarized information about wine bars - address - phone - parking - opening_hours - menu - holidays - img_url The form of Desired Outcome must be 'key1, key2, ...'. For example to get the name and price of wine, enter 'name, price'. """ ), Tool( name = "Search", func=search.run, coroutine=search.arun, description="Useful for when you need to ask with search. Search in English only." ), Tool( name = "Map", func=kakao_map.run, coroutine=kakao_map.arun, description="The tool used to draw a district for a region. When looking for wine bars, you can use this before applying filters based on location. The query must be in Korean. You can get the following attribute: district." ), ] template = """ Your role is a chatbot that asks customers questions about wine and makes recommendations. Never forget your name is "이우선". Keep your responses in short length to retain the user's attention unless you describe the wine for recommendations. Be sure to actively empathize and respond to your users. Only generate one response at a time! When you are done generating, end with '' to give the user a chance to respond. Responses should be in Korean. Complete the objective as best you can. You have access to the following tools: {tools} Use the following format: Thought: you should always think about what to do Action: the action to take, should be one of [{tool_names}] Action Input: the input to the action Desired Outcome: the desired outcome from the action (optional) Observation: the result of the action ... (this Thought/Action/Action Input/Observation can repeat N times) Thought: I now know the final answer 이우선: the final response to the user You must respond according to the conversation stage within the triple backticks and conversation history within in '======'. Current conversation stage: ```{conversation_stage}``` Conversation history: ======= {conversation_history} ======= Last user saying: {input} {agent_scratchpad} """ conversation_stages_dict = { "1": "Introduction: Start the conversation by introducing yourself. Maintain politeness, respect, and a professional tone.", "2": "Needs Analysis: Identify the customer's needs to make wine recommendations. Note that the wine database tools are not available. You ask about the occasion the customer will enjoy the wine, what they eat with it, and their desired price point. Ask only ONE question at a time.", "3": "Checking Price Range: Asking the customer's preferred price point. Again, remember that the tool for this is not available. But if you know the customer's perferences and price range, then search for the three most suitable wines with tool and recommend them product cards in a list format with a Vivino link, price, rating, wine type, flavor description, and image.", "4": "Wine Recommendation: Propose the three most suitable wines based on the customer's needs and price range. Before the recommendation, you should have identified the occasion the customer will enjoy the wine, what they will eat with it, and their desired price point. Each wine recommendation should form of product cards in a list format with a Vivino link, price, rating, wine type, flavor description, and image. Use only wines available in the database for recommendations. If there are no suitable wines in the database, inform the customer. After making a recommendation, inquire whether the customer likes the suggested wine.", "5": "Sales: If the customer approves of the recommended wine, provide a detailed description. Supply a product card in a list format with a Vivino link, price, rating, wine type, flavor description, and image.", "6": "Location Suggestions: Recommend wine bars based on the customer's location and occasion. Before making a recommendation, always use the map tool to find the district of the customer's preferred location. Then use the wine bar database tool to find a suitable wine bar. Provide form of product cards in a list format with the wine bar's name, url, rating, address, menu, opening_hours, holidays, phone, summary, and image with img_urls.", "7": "Concluding the Conversation: Respond appropriately to the customer's comments to wrap up the conversation.", "8": "Questions and Answers: This stage involves answering customer's inquiries. Use the search tool or wine database tool to provide specific answers where possible. Describe answer as detailed as possible", "9": "Other Situations: Use this step when the situation does not fit into any of the steps between 1 and 8." } # Set up a prompt template class CustomPromptTemplate(StringPromptTemplate): # The template to use template: str # The list of tools available tools: List[Tool] def format(self, **kwargs) -> str: stage_number = kwargs.pop("stage_number") kwargs["conversation_stage"] = conversation_stages_dict[stage_number] # Get the intermediate steps (AgentAction, Observation tuples) # Format them in a particular way intermediate_steps = kwargs.pop("intermediate_steps") thoughts = "" special_chars = "()'[]{}" for action, observation in intermediate_steps: thoughts += action.log if ('Desired Outcome: ' in action.log) and (('Action: Wine database' in action.log) or ('Action: Wine bar database' in action.log)): regex = r"Desired Outcome:(.*)" match = re.search(regex, action.log, re.DOTALL) if not match: raise ValueError(f"Could not parse Desired Outcome: `{action.log}`") desired_outcome_keys = [key.strip() for key in match.group(1).split(',')] pattern = re.compile(r'metadata=\{(.*?)\}') matches = pattern.findall(f'{observation}') documents = ['{'+f'{match}'+'}' for match in matches] pattern = re.compile(r"'(\w+)':\s*('[^']+'|\b[^\s,]+\b)") output=[] for doc in documents: # Extract key-value pairs from the document string matches = pattern.findall(doc) # Convert matches to a dictionary doc_dict = dict(matches) # Create a new dictionary containing only the desired keys item_dict = {} for key in desired_outcome_keys: value = doc_dict.get(key, "") for c in special_chars: value = value.replace(c, "") item_dict[key] = value output.append(item_dict) observation = ','.join([str(i) for i in output]) thoughts += f"\nObservation: {observation}\nThought: " # Set the agent_scratchpad variable to that value kwargs["agent_scratchpad"] = thoughts # Create a tools variable from the list of tools provided kwargs["tools"] = "\n".join([f"{tool.name}: {tool.description}" for tool in self.tools]) # Create a list of tool names for the tools provided kwargs["tool_names"] = ", ".join([tool.name for tool in self.tools]) return self.template.format(**kwargs) prompt = CustomPromptTemplate( template=template, tools=tools, input_variables=["input", "intermediate_steps", "conversation_history", "stage_number"] ) class CustomOutputParser(AgentOutputParser): def parse(self, llm_output: str) -> Union[AgentAction, AgentFinish]: # Check if agent should finish if "이우선: " in llm_output: return AgentFinish( # Return values is generally always a dictionary with a single `output` key # It is not recommended to try anything else at the moment :) return_values={"output": llm_output.split("이우선: ")[-1].strip()}, log=llm_output, ) # Parse out the action and action input regex = r"Action\s*\d*\s*:(.*?)\nAction\s*\d*\s*Input\s*\d*\s*:[\s]*(.*?)\n" match = re.search(regex, llm_output, re.DOTALL) if not match: raise ValueError(f"Could not parse LLM output: `{llm_output}`") action = match.group(1).strip() action_input = match.group(2) # desired_outcome = match.group(3).strip() if match.group(3) else None # Return the action and action input return AgentAction(tool=action, tool_input=action_input.strip(" ").strip('"'), log=llm_output) output_parser = CustomOutputParser() ### Gradio class CustomStreamingStdOutCallbackHandler(FinalStreamingStdOutCallbackHandler): """Callback handler for streaming in agents. Only works with agents using LLMs that support streaming. The output will be streamed until " None: """Instantiate EofStreamingStdOutCallbackHandler. Args: answer_prefix_tokens: Token sequence that prefixes the anwer. Default is ["Final", "Answer", ":"] end_of_file_token: Token that signals end of file. Default is "END" strip_tokens: Ignore white spaces and new lines when comparing answer_prefix_tokens to last tokens? (to determine if answer has been reached) stream_prefix: Should answer prefix itself also be streamed? """ super().__init__(answer_prefix_tokens=answer_prefix_tokens, strip_tokens=strip_tokens, stream_prefix=stream_prefix) self.end_prefix_tokens = end_prefix_tokens self.end_reached = False self.sender = sender def append_to_last_tokens(self, token: str) -> None: self.last_tokens.append(token) self.last_tokens_stripped.append(token.strip()) if len(self.last_tokens) > 5: self.last_tokens.pop(0) self.last_tokens_stripped.pop(0) def on_llm_start( self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any ) -> None: """Run when LLM starts running.""" self.answer_reached = False self.end_reached = False def check_if_answer_reached(self) -> bool: if self.strip_tokens: return ''.join(self.last_tokens_stripped) in self.answer_prefix_tokens_stripped else: unfied_last_tokens = ''.join(self.last_tokens) try: unfied_last_tokens.index(self.answer_prefix_tokens) return True except: return False def check_if_end_reached(self) -> bool: if self.strip_tokens: return ''.join(self.last_tokens_stripped) in self.answer_prefix_tokens_stripped else: unfied_last_tokens = ''.join(self.last_tokens) try: unfied_last_tokens.index(self.end_prefix_tokens) self.sender[1] = True return True except: # try: # unfied_last_tokens.index('Action Input') # self.sender[1] = False # return False # except: # return False return False def on_llm_new_token(self, token: str, **kwargs: Any) -> None: """Run on new LLM token. Only available when streaming is enabled.""" # Remember the last n tokens, where n = len(answer_prefix_tokens) self.append_to_last_tokens(token) # Check if the last n tokens match the answer_prefix_tokens list ... if not self.answer_reached and self.check_if_answer_reached(): self.answer_reached = True if self.stream_prefix: for t in self.last_tokens: sys.stdout.write(t) sys.stdout.flush() return if not self.end_reached and self.check_if_end_reached(): self.end_reached = True if self.end_reached: pass elif self.answer_reached: if self.last_tokens[-2] == ":": pass else: self.sender[0] += self.last_tokens[-2] class UnifiedAgent: def __init__(self): tools = [ Tool( name="Wine database", func=wine_retriever.get_relevant_documents, coroutine=wine_retriever.aget_relevant_documents, description=""" Database about the wines in wine store. You can search wines with the following attributes: - price: The price range of the wine. You have to specify greater than and less than. - rating: 1-5 rating float for the wine. You have to specify greater than and less than. - wine_type: The type of wine. It can be '레드', '로제', '스파클링', '화이트', '디저트', '주정강화' - name: The name of wine. - pairing: The food pairing of wine. The form of Action Input must be 'key1: value1, key2: value2, ...'. For example, to search for wines with a rating of less than 3 points, a price range of 50000원 or more, and a meat pairing, enter 'rating: gt 0 lt 3, price: gt 50000, pairing: 고기'. -------------------------------------------------- You can get the following attributes: - url: Wine purchase site URL. - vivino_link: Vivino link of wine. - flavor_description - site_name: Wine purchase site name. - name: The name of wine in korean. - en_name: The name of wine in english. - price: The price of wine in 원. - rating: 1-5 vivino rating. - wine_type: The type of wine. - pairing: The food pairing of wine. - pickup_location: Offline stores where you can purchase wine - img_url - country - body - tannin - sweetness - acidity - alcohol - grape The form of Desired Outcome must be 'key1, key2, ...'. For example to get the name and price of wine, enter 'name, price'. """ ), Tool( name = "Wine bar database", func=wine_bar_retriever.get_relevant_documents, coroutine=wine_bar_retriever.aget_relevant_documents, description="Database about the winebars in Seoul. It should be the first thing you use when looking for information about a wine bar." """ - query: The query of winebar. You can search wines with review data like mood or something. - name: The name of winebar. - price: The average price point of a wine bar. - rating: 1-5 rating float for the wine bar. - district: The district of wine bar. Input district must be korean. For example, if you want to search for wines in Gangnam, enter 'district: 강남구' The form of Action Input must be 'key1: value1, key2: value2, ...'. -------------------------------------------------- You can get the following attributes: - name: The name of winebar. - url: Wine purchase site URL. - rating: 1-5 망고플레이트(맛집검색 앱) rating. - summary: Summarized information about wine bars - address - phone - parking - opening_hours - menu - holidays - img_url The form of Desired Outcome must be 'key1, key2, ...'. For example to get the name and price of wine, enter 'name, price'. """ ), Tool( name = "Search", func=search.run, coroutine=search.arun, description="Useful for when you need to ask with search. Search in English only." ), Tool( name = "Map", func=kakao_map.run, coroutine=kakao_map.arun, description="The tool used to draw a district for a region. When looking for wine bars, you can use this before applying filters based on location. The query must be in Korean. You can get the following attribute: district." ), ] llm_chain = LLMChain(llm=ChatOpenAI(model='gpt-4', temperature=0.5, streaming=True), prompt=prompt, verbose=False,) tool_names = [tool.name for tool in tools] agent = LLMSingleActionAgent( llm_chain=llm_chain, output_parser=output_parser, stop=["\nObservation:"], allowed_tools=tool_names ) agent_executor = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=True) self.agent_executor = agent_executor async def arun(self, sender, *args, **kwargs): resp = await self.agent_executor.arun(kwargs, callbacks=[CustomStreamingStdOutCallbackHandler(answer_prefix_tokens='이우선:', end_prefix_tokens='

ChatWine

LinkedIn Audrey.ai

""") chatbot = gr.Chatbot() with gr.Row(): with gr.Column(scale=0.85): msg = gr.Textbox() with gr.Column(scale=0.15, min_width=0): submit_btn = gr.Button("전송") user_response_examples = gr.Dataset(samples=[["이번 주에 친구들과 모임이 있는데, 훌륭한 와인 한 병을 추천해줄래?"], ["입문자에게 좋은 와인을 추천해줄래?"], ["연인과 가기 좋은 와인바를 알려줘"]], components=[msg], type="index") clear_btn = gr.ClearButton([msg, chatbot]) dev_mod = True cur_stage = gr.Textbox(visible=dev_mod, interactive=False, label='current_stage') stage_hist = gr.Textbox(visible=dev_mod, value="stage history: ", interactive=False, label='stage history') chat_hist = gr.Textbox(visible=dev_mod, interactive=False, label='chatting_history') response_examples_text = gr.Textbox(visible=dev_mod, interactive=False, value="이번 주에 친구들과 모임이 있는데, 훌륭한 와인 한 병을 추천해줄래?|입문자에게 좋은 와인을 추천해줄래?|연인과 가기 좋은 와인바를 알려줘", label='response_examples') hf_writer.setup(components=[chat_hist, stage_hist, response_examples_text], flagging_dir="chatwine-korean") def click_flag_btn(*args): hf_writer.flag(flag_data=[*args]) def clean(*args): return gr.Dataset.update(samples=[["이번 주에 친구들과 모임이 있는데, 훌륭한 와인 한 병을 추천해줄래?"], ["입문자에게 좋은 와인을 추천해줄래?"], ["연인과 가기 좋은 와인바를 알려줘"]]), "", "stage history: ", "", "이번 주에 친구들과 모임이 있는데, 훌륭한 와인 한 병을 추천해줄래?|입문자에게 좋은 와인을 추천해줄래?|연인과 가기 좋은 와인바를 알려줘" def load_example(response_text, input_idx): response_examples = [] for user_response_example in response_text.split('|'): response_examples.append([user_response_example]) return response_examples[input_idx][0] async def agent_run(agent_exec, inp, sender): sender[0] = "" await agent_exec.arun(inp) def user_chat(user_message, chat_history_list, chat_history): return (chat_history_list + [[user_message, None]], chat_history + f"User: {user_message} \n", []) async def bot_stage_pred(user_response, chat_history, stage_history): pre_chat_history = ''.join(chat_history.split('')[:-2]) if pre_chat_history != '': pre_chat_history += '' # stage_number = unified_chain.stage_analyzer_chain.run({'conversation_history': pre_chat_history, 'stage_history': stage_history.replace('stage history: ', ''), 'last_user_saying':user_response+' \n'}) stage_number = await unified_chain.arun_stage_analyzer_chain(conversation_history=pre_chat_history, stage_history= stage_history.replace('stage history: ', ''), last_user_saying=user_response+' \n') stage_number = stage_number[-1] stage_history += stage_number if stage_history == "stage history: " else ", " + stage_number print(stage_history) return stage_number, stage_history async def bot_chat(user_response, chat_history, chat_history_list, current_stage): # stream output by yielding pre_chat_history = ''.join(chat_history.split('')[:-2]) if pre_chat_history != '': pre_chat_history += '' sender = ["", False] task = asyncio.create_task(unified_agent.arun(sender = sender, input=user_response+' \n', conversation_history=pre_chat_history, stage_number= current_stage)) await asyncio.sleep(0) while(sender[1] == False): await asyncio.sleep(0.2) chat_history_list[-1][1] = sender[0] yield chat_history_list, chat_history + f"이우선: {sender[0]}\n" chat_history_list[-1][1] = sender[0] print(chat_history + f"이우선: {sender[0]}\n") yield chat_history_list, chat_history + f"이우선: {sender[0]}\n" async def bot_response_pred(chat_history): response_examples = [] pre_chat_history = ''.join(chat_history.split('')[-3:]) out = await unified_chain.arun_user_response_chain(conversation_history=pre_chat_history) for user_response_example in out.split('|'): response_examples.append([user_response_example]) print(response_examples) return [response_examples, out, ""] # btn.click(lambda *args: hf_writer.flag(args), [msg, chat_hist, stage_hist, response_examples_text], None, preprocess=False) msg.submit( user_chat, [msg, chatbot, chat_hist], [chatbot, chat_hist, user_response_examples], queue=False ).then( bot_stage_pred, [msg, chat_hist, stage_hist], [cur_stage, stage_hist], queue=False ).then( bot_chat, [msg, chat_hist, chatbot, cur_stage], [chatbot, chat_hist] ).then( bot_response_pred, chat_hist, [user_response_examples, response_examples_text, msg] ).then( click_flag_btn, [chat_hist, stage_hist, response_examples_text], None ) submit_btn.click( user_chat, [msg, chatbot, chat_hist], [chatbot, chat_hist, user_response_examples], queue=False ).then( bot_stage_pred, [msg, chat_hist, stage_hist], [cur_stage, stage_hist], queue=False ).then( bot_chat, [msg, chat_hist, chatbot, cur_stage], [chatbot, chat_hist] ).then( bot_response_pred, chat_hist, [user_response_examples, response_examples_text, msg] ).then( click_flag_btn, [chat_hist, stage_hist, response_examples_text], None ) clear_btn.click( clean, inputs=[user_response_examples, cur_stage, stage_hist, chat_hist, response_examples_text], outputs=[user_response_examples, cur_stage, stage_hist, chat_hist, response_examples_text], queue=False) user_response_examples.click(load_example, inputs=[response_examples_text, user_response_examples], outputs=[msg], queue=False) demo.queue(concurrency_count=100) demo.launch()