import logging from typing import Generator, Sequence, Tuple from clickhouse_connect.driver.common import empty_gen, StreamContext from clickhouse_connect.driver.exceptions import StreamClosedError from clickhouse_connect.driver.types import Closable from clickhouse_connect.driver.options import np, pd logger = logging.getLogger(__name__) # pylint: disable=too-many-instance-attributes class NumpyResult(Closable): def __init__(self, block_gen: Generator[Sequence, None, None] = None, column_names: Tuple = (), column_types: Tuple = (), d_types: Sequence = (), source: Closable = None): self.column_names = column_names self.column_types = column_types self.np_types = d_types self.source = source self.query_id = '' self.summary = {} self._block_gen = block_gen or empty_gen() self._numpy_result = None self._df_result = None def _np_stream(self) -> Generator: if self._block_gen is None: raise StreamClosedError block_gen = self._block_gen self._block_gen = None if not self.np_types: return block_gen d_types = self.np_types first_type = d_types[0] if first_type != np.object_ and all(np.dtype(np_type) == first_type for np_type in d_types): self.np_types = first_type def numpy_blocks(): for block in block_gen: yield np.array(block, first_type).transpose() else: if any(x == np.object_ for x in d_types): self.np_types = [np.object_] * len(self.np_types) self.np_types = np.dtype(list(zip(self.column_names, d_types))) def numpy_blocks(): for block in block_gen: np_array = np.empty(len(block[0]), dtype=self.np_types) for col_name, data in zip(self.column_names, block): np_array[col_name] = data yield np_array return numpy_blocks() def _df_stream(self) -> Generator: if self._block_gen is None: raise StreamClosedError block_gen = self._block_gen def pd_blocks(): for block in block_gen: yield pd.DataFrame(dict(zip(self.column_names, block))) self._block_gen = None return pd_blocks() def close_numpy(self): if not self._block_gen: raise StreamClosedError chunk_size = 4 pieces = [] blocks = [] for block in self._np_stream(): blocks.append(block) if len(blocks) == chunk_size: pieces.append(np.concatenate(blocks, dtype=self.np_types)) chunk_size *= 2 blocks = [] pieces.extend(blocks) if len(pieces) > 1: self._numpy_result = np.concatenate(pieces, dtype=self.np_types) elif len(pieces) == 1: self._numpy_result = pieces[0] else: self._numpy_result = np.empty((0,)) self.close() return self def close_df(self): pieces = list(self._df_stream()) if len(pieces) > 1: self._df_result = pd.concat(pieces, ignore_index=True) elif len(pieces) == 1: self._df_result = pieces[0] else: self._df_result = pd.DataFrame() self.close() return self @property def np_result(self): if self._numpy_result is None: self.close_numpy() return self._numpy_result @property def df_result(self): if self._df_result is None: self.close_df() return self._df_result @property def np_stream(self) -> StreamContext: return StreamContext(self, self._np_stream()) @property def df_stream(self) -> StreamContext: return StreamContext(self, self._df_stream()) def close(self): if self._block_gen is not None: self._block_gen.close() self._block_gen = None if self.source: self.source.close() self.source = None