from typing import TYPE_CHECKING, Optional, Tuple, cast, List from pydantic import BaseModel, PrivateAttr from uuid import UUID import chromadb.utils.embedding_functions as ef from chromadb.api.types import ( CollectionMetadata, Embedding, Include, Metadata, Document, Where, IDs, EmbeddingFunction, GetResult, QueryResult, ID, OneOrMany, WhereDocument, maybe_cast_one_to_many, validate_ids, validate_include, validate_metadatas, validate_where, validate_where_document, validate_n_results, validate_embeddings, ) import logging logger = logging.getLogger(__name__) if TYPE_CHECKING: from chromadb.api import API class Collection(BaseModel): name: str id: UUID metadata: Optional[CollectionMetadata] = None _client: "API" = PrivateAttr() _embedding_function: Optional[EmbeddingFunction] = PrivateAttr() def __init__( self, client: "API", name: str, id: UUID, embedding_function: Optional[EmbeddingFunction] = ef.DefaultEmbeddingFunction(), metadata: Optional[CollectionMetadata] = None, ): self._client = client self._embedding_function = embedding_function super().__init__(name=name, metadata=metadata, id=id) def __repr__(self) -> str: return f"Collection(name={self.name})" def count(self) -> int: """The total number of embeddings added to the database Returns: int: The total number of embeddings added to the database """ return self._client._count(collection_id=self.id) def add( self, ids: OneOrMany[ID], embeddings: Optional[OneOrMany[Embedding]] = None, metadatas: Optional[OneOrMany[Metadata]] = None, documents: Optional[OneOrMany[Document]] = None, increment_index: bool = True, ) -> None: """Add embeddings to the data store. Args: ids: The ids of the embeddings you wish to add embedding: The embeddings to add. If None, embeddings will be computed based on the documents using the embedding_function set for the Collection. Optional. metadata: The metadata to associate with the embeddings. When querying, you can filter on this metadata. Optional. documents: The documents to associate with the embeddings. Optional. ids: The ids to associate with the embeddings. Optional. Returns: None Raises: ValueError: If you don't provide either embeddings or documents ValueError: If the length of ids, embeddings, metadatas, or documents don't match ValueError: If you don't provide an embedding function and don't provide embeddings ValueError: If you provide both embeddings and documents ValueError: If you provide an id that already exists """ ids, embeddings, metadatas, documents = self._validate_embedding_set( ids, embeddings, metadatas, documents ) self._client._add( ids, self.id, embeddings, metadatas, documents, increment_index ) def get( self, ids: Optional[OneOrMany[ID]] = None, where: Optional[Where] = None, limit: Optional[int] = None, offset: Optional[int] = None, where_document: Optional[WhereDocument] = None, include: Include = ["metadatas", "documents"], ) -> GetResult: """Get embeddings and their associate data from the data store. If no ids or where filter is provided returns all embeddings up to limit starting at offset. Args: ids: The ids of the embeddings to get. Optional. where: A Where type dict used to filter results by. E.g. `{"color" : "red", "price": 4.20}`. Optional. limit: The number of documents to return. Optional. offset: The offset to start returning results from. Useful for paging results with limit. Optional. where_document: A WhereDocument type dict used to filter by the documents. E.g. `{$contains: {"text": "hello"}}`. Optional. include: A list of what to include in the results. Can contain `"embeddings"`, `"metadatas"`, `"documents"`. Ids are always included. Defaults to `["metadatas", "documents"]`. Optional. Returns: GetResult: A GetResult object containing the results. """ where = validate_where(where) if where else None where_document = ( validate_where_document(where_document) if where_document else None ) ids = validate_ids(maybe_cast_one_to_many(ids)) if ids else None include = validate_include(include, allow_distances=False) return self._client._get( self.id, ids, where, None, limit, offset, where_document=where_document, include=include, ) def peek(self, limit: int = 10) -> GetResult: """Get the first few results in the database up to limit Args: limit: The number of results to return. Returns: GetResult: A GetResult object containing the results. """ return self._client._peek(self.id, limit) def query( self, query_embeddings: Optional[OneOrMany[Embedding]] = None, query_texts: Optional[OneOrMany[Document]] = None, n_results: int = 10, where: Optional[Where] = None, where_document: Optional[WhereDocument] = None, include: Include = ["metadatas", "documents", "distances"], ) -> QueryResult: """Get the n_results nearest neighbor embeddings for provided query_embeddings or query_texts. Args: query_embeddings: The embeddings to get the closes neighbors of. Optional. query_texts: The document texts to get the closes neighbors of. Optional. n_results: The number of neighbors to return for each query_embedding or query_texts. Optional. where: A Where type dict used to filter results by. E.g. `{"color" : "red", "price": 4.20}`. Optional. where_document: A WhereDocument type dict used to filter by the documents. E.g. `{$contains: {"text": "hello"}}`. Optional. include: A list of what to include in the results. Can contain `"embeddings"`, `"metadatas"`, `"documents"`, `"distances"`. Ids are always included. Defaults to `["metadatas", "documents", "distances"]`. Optional. Returns: QueryResult: A QueryResult object containing the results. Raises: ValueError: If you don't provide either query_embeddings or query_texts ValueError: If you provide both query_embeddings and query_texts """ where = validate_where(where) if where else None where_document = ( validate_where_document(where_document) if where_document else None ) query_embeddings = ( validate_embeddings(maybe_cast_one_to_many(query_embeddings)) if query_embeddings is not None else None ) query_texts = ( maybe_cast_one_to_many(query_texts) if query_texts is not None else None ) include = validate_include(include, allow_distances=True) n_results = validate_n_results(n_results) # If neither query_embeddings nor query_texts are provided, or both are provided, raise an error if (query_embeddings is None and query_texts is None) or ( query_embeddings is not None and query_texts is not None ): raise ValueError( "You must provide either query embeddings or query texts, but not both" ) # If query_embeddings are not provided, we need to compute them from the query_texts if query_embeddings is None: if self._embedding_function is None: raise ValueError( "You must provide embeddings or a function to compute them" ) # We know query texts is not None at this point, cast for the typechecker query_embeddings = self._embedding_function( cast(List[Document], query_texts) ) if where is None: where = {} if where_document is None: where_document = {} return self._client._query( collection_id=self.id, query_embeddings=query_embeddings, n_results=n_results, where=where, where_document=where_document, include=include, ) def modify( self, name: Optional[str] = None, metadata: Optional[CollectionMetadata] = None ) -> None: """Modify the collection name or metadata Args: name: The updated name for the collection. Optional. metadata: The updated metadata for the collection. Optional. Returns: None """ self._client._modify(id=self.id, new_name=name, new_metadata=metadata) if name: self.name = name if metadata: self.metadata = metadata def update( self, ids: OneOrMany[ID], embeddings: Optional[OneOrMany[Embedding]] = None, metadatas: Optional[OneOrMany[Metadata]] = None, documents: Optional[OneOrMany[Document]] = None, ) -> None: """Update the embeddings, metadatas or documents for provided ids. Args: ids: The ids of the embeddings to update embeddings: The embeddings to add. If None, embeddings will be computed based on the documents using the embedding_function set for the Collection. Optional. metadatas: The metadata to associate with the embeddings. When querying, you can filter on this metadata. Optional. documents: The documents to associate with the embeddings. Optional. Returns: None """ ids, embeddings, metadatas, documents = self._validate_embedding_set( ids, embeddings, metadatas, documents, require_embeddings_or_documents=False ) self._client._update(self.id, ids, embeddings, metadatas, documents) def upsert( self, ids: OneOrMany[ID], embeddings: Optional[OneOrMany[Embedding]] = None, metadatas: Optional[OneOrMany[Metadata]] = None, documents: Optional[OneOrMany[Document]] = None, increment_index: bool = True, ) -> None: """Update the embeddings, metadatas or documents for provided ids, or create them if they don't exist. Args: ids: The ids of the embeddings to update embeddings: The embeddings to add. If None, embeddings will be computed based on the documents using the embedding_function set for the Collection. Optional. metadatas: The metadata to associate with the embeddings. When querying, you can filter on this metadata. Optional. documents: The documents to associate with the embeddings. Optional. Returns: None """ ids, embeddings, metadatas, documents = self._validate_embedding_set( ids, embeddings, metadatas, documents ) self._client._upsert( collection_id=self.id, ids=ids, embeddings=embeddings, metadatas=metadatas, documents=documents, increment_index=increment_index, ) def delete( self, ids: Optional[IDs] = None, where: Optional[Where] = None, where_document: Optional[WhereDocument] = None, ) -> None: """Delete the embeddings based on ids and/or a where filter Args: ids: The ids of the embeddings to delete where: A Where type dict used to filter the delection by. E.g. `{"color" : "red", "price": 4.20}`. Optional. where_document: A WhereDocument type dict used to filter the deletion by the document content. E.g. `{$contains: {"text": "hello"}}`. Optional. Returns: None """ ids = validate_ids(maybe_cast_one_to_many(ids)) if ids else None where = validate_where(where) if where else None where_document = ( validate_where_document(where_document) if where_document else None ) self._client._delete(self.id, ids, where, where_document) def create_index(self) -> None: self._client.create_index(self.name) def _validate_embedding_set( self, ids: OneOrMany[ID], embeddings: Optional[OneOrMany[Embedding]], metadatas: Optional[OneOrMany[Metadata]], documents: Optional[OneOrMany[Document]], require_embeddings_or_documents: bool = True, ) -> Tuple[ IDs, List[Embedding], Optional[List[Metadata]], Optional[List[Document]], ]: ids = validate_ids(maybe_cast_one_to_many(ids)) embeddings = ( validate_embeddings(maybe_cast_one_to_many(embeddings)) if embeddings is not None else None ) metadatas = ( validate_metadatas(maybe_cast_one_to_many(metadatas)) if metadatas is not None else None ) documents = maybe_cast_one_to_many(documents) if documents is not None else None # Check that one of embeddings or documents is provided if require_embeddings_or_documents: if embeddings is None and documents is None: raise ValueError( "You must provide either embeddings or documents, or both" ) # Check that, if they're provided, the lengths of the arrays match the length of ids if embeddings is not None and len(embeddings) != len(ids): raise ValueError( f"Number of embeddings {len(embeddings)} must match number of ids {len(ids)}" ) if metadatas is not None and len(metadatas) != len(ids): raise ValueError( f"Number of metadatas {len(metadatas)} must match number of ids {len(ids)}" ) if documents is not None and len(documents) != len(ids): raise ValueError( f"Number of documents {len(documents)} must match number of ids {len(ids)}" ) # If document embeddings are not provided, we need to compute them if embeddings is None and documents is not None: if self._embedding_function is None: raise ValueError( "You must provide embeddings or a function to compute them" ) embeddings = self._embedding_function(documents) # if embeddings is None: # raise ValueError( # "Something went wrong. Embeddings should be computed at this point" # ) return ids, embeddings, metadatas, documents # type: ignore