Spaces:
Running
on
Zero
Running
on
Zero
SunderAli17
commited on
Commit
•
5d18928
1
Parent(s):
e3a081c
Create util.py
Browse files- flux/util.py +156 -0
flux/util.py
ADDED
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from dataclasses import dataclass
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from einops import rearrange
|
6 |
+
from huggingface_hub import hf_hub_download
|
7 |
+
from safetensors.torch import load_file as load_sft
|
8 |
+
|
9 |
+
from flux.model import Flux, FluxParams
|
10 |
+
from flux.modules.autoencoder import AutoEncoder, AutoEncoderParams
|
11 |
+
from flux.modules.conditioner import HFEmbedder
|
12 |
+
|
13 |
+
|
14 |
+
@dataclass
|
15 |
+
class ModelSpec:
|
16 |
+
params: FluxParams
|
17 |
+
ae_params: AutoEncoderParams
|
18 |
+
ckpt_path: str
|
19 |
+
ae_path: str
|
20 |
+
repo_id: str
|
21 |
+
repo_flow: str
|
22 |
+
repo_ae: str
|
23 |
+
|
24 |
+
|
25 |
+
configs = {
|
26 |
+
"flux-dev": ModelSpec(
|
27 |
+
repo_id="black-forest-labs/FLUX.1-dev",
|
28 |
+
repo_flow="flux1-dev.safetensors",
|
29 |
+
repo_ae="ae.safetensors",
|
30 |
+
ckpt_path='models/flux1-dev.safetensors',
|
31 |
+
params=FluxParams(
|
32 |
+
in_channels=64,
|
33 |
+
vec_in_dim=768,
|
34 |
+
context_in_dim=4096,
|
35 |
+
hidden_size=3072,
|
36 |
+
mlp_ratio=4.0,
|
37 |
+
num_heads=24,
|
38 |
+
depth=19,
|
39 |
+
depth_single_blocks=38,
|
40 |
+
axes_dim=[16, 56, 56],
|
41 |
+
theta=10_000,
|
42 |
+
qkv_bias=True,
|
43 |
+
guidance_embed=True,
|
44 |
+
),
|
45 |
+
ae_path='models/ae.safetensors',
|
46 |
+
ae_params=AutoEncoderParams(
|
47 |
+
resolution=256,
|
48 |
+
in_channels=3,
|
49 |
+
ch=128,
|
50 |
+
out_ch=3,
|
51 |
+
ch_mult=[1, 2, 4, 4],
|
52 |
+
num_res_blocks=2,
|
53 |
+
z_channels=16,
|
54 |
+
scale_factor=0.3611,
|
55 |
+
shift_factor=0.1159,
|
56 |
+
),
|
57 |
+
),
|
58 |
+
"flux-schnell": ModelSpec(
|
59 |
+
repo_id="black-forest-labs/FLUX.1-schnell",
|
60 |
+
repo_flow="flux1-schnell.safetensors",
|
61 |
+
repo_ae="ae.safetensors",
|
62 |
+
ckpt_path=os.getenv("FLUX_SCHNELL"),
|
63 |
+
params=FluxParams(
|
64 |
+
in_channels=64,
|
65 |
+
vec_in_dim=768,
|
66 |
+
context_in_dim=4096,
|
67 |
+
hidden_size=3072,
|
68 |
+
mlp_ratio=4.0,
|
69 |
+
num_heads=24,
|
70 |
+
depth=19,
|
71 |
+
depth_single_blocks=38,
|
72 |
+
axes_dim=[16, 56, 56],
|
73 |
+
theta=10_000,
|
74 |
+
qkv_bias=True,
|
75 |
+
guidance_embed=False,
|
76 |
+
),
|
77 |
+
ae_path=os.getenv("AE"),
|
78 |
+
ae_params=AutoEncoderParams(
|
79 |
+
resolution=256,
|
80 |
+
in_channels=3,
|
81 |
+
ch=128,
|
82 |
+
out_ch=3,
|
83 |
+
ch_mult=[1, 2, 4, 4],
|
84 |
+
num_res_blocks=2,
|
85 |
+
z_channels=16,
|
86 |
+
scale_factor=0.3611,
|
87 |
+
shift_factor=0.1159,
|
88 |
+
),
|
89 |
+
),
|
90 |
+
}
|
91 |
+
|
92 |
+
|
93 |
+
def print_load_warning(missing: list[str], unexpected: list[str]) -> None:
|
94 |
+
if len(missing) > 0 and len(unexpected) > 0:
|
95 |
+
print(f"Got {len(missing)} missing keys:\n\t" + "\n\t".join(missing))
|
96 |
+
print("\n" + "-" * 79 + "\n")
|
97 |
+
print(f"Got {len(unexpected)} unexpected keys:\n\t" + "\n\t".join(unexpected))
|
98 |
+
elif len(missing) > 0:
|
99 |
+
print(f"Got {len(missing)} missing keys:\n\t" + "\n\t".join(missing))
|
100 |
+
elif len(unexpected) > 0:
|
101 |
+
print(f"Got {len(unexpected)} unexpected keys:\n\t" + "\n\t".join(unexpected))
|
102 |
+
|
103 |
+
|
104 |
+
def load_flow_model(name: str, device: str = "cuda", hf_download: bool = True):
|
105 |
+
# Loading Flux
|
106 |
+
print("Init model")
|
107 |
+
ckpt_path = configs[name].ckpt_path
|
108 |
+
if (
|
109 |
+
not os.path.exists(ckpt_path)
|
110 |
+
and configs[name].repo_id is not None
|
111 |
+
and configs[name].repo_flow is not None
|
112 |
+
and hf_download
|
113 |
+
):
|
114 |
+
ckpt_path = hf_hub_download(configs[name].repo_id, configs[name].repo_flow, local_dir='models')
|
115 |
+
|
116 |
+
with torch.device(device):
|
117 |
+
model = Flux(configs[name].params).to(torch.bfloat16)
|
118 |
+
|
119 |
+
if ckpt_path is not None:
|
120 |
+
print("Loading checkpoint")
|
121 |
+
# load_sft doesn't support torch.device
|
122 |
+
sd = load_sft(ckpt_path, device=str(device))
|
123 |
+
missing, unexpected = model.load_state_dict(sd, strict=False)
|
124 |
+
print_load_warning(missing, unexpected)
|
125 |
+
return model
|
126 |
+
|
127 |
+
|
128 |
+
def load_t5(device: str = "cuda", max_length: int = 512) -> HFEmbedder:
|
129 |
+
# max length 64, 128, 256 and 512 should work (if your sequence is short enough)
|
130 |
+
return HFEmbedder("xlabs-ai/xflux_text_encoders", max_length=max_length, torch_dtype=torch.bfloat16).to(device)
|
131 |
+
|
132 |
+
|
133 |
+
def load_clip(device: str = "cuda") -> HFEmbedder:
|
134 |
+
return HFEmbedder("openai/clip-vit-large-patch14", max_length=77, torch_dtype=torch.bfloat16).to(device)
|
135 |
+
|
136 |
+
|
137 |
+
def load_ae(name: str, device: str = "cuda", hf_download: bool = True) -> AutoEncoder:
|
138 |
+
ckpt_path = configs[name].ae_path
|
139 |
+
if (
|
140 |
+
not os.path.exists(ckpt_path)
|
141 |
+
and configs[name].repo_id is not None
|
142 |
+
and configs[name].repo_ae is not None
|
143 |
+
and hf_download
|
144 |
+
):
|
145 |
+
ckpt_path = hf_hub_download(configs[name].repo_id, configs[name].repo_ae, local_dir='models')
|
146 |
+
|
147 |
+
# Loading the autoencoder
|
148 |
+
print("Init AE")
|
149 |
+
with torch.device(device):
|
150 |
+
ae = AutoEncoder(configs[name].ae_params)
|
151 |
+
|
152 |
+
if ckpt_path is not None:
|
153 |
+
sd = load_sft(ckpt_path, device=str(device))
|
154 |
+
missing, unexpected = ae.load_state_dict(sd, strict=False)
|
155 |
+
print_load_warning(missing, unexpected)
|
156 |
+
return ae
|