Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import tensorflow as tf
|
3 |
+
import numpy as np
|
4 |
+
from PIL import Image
|
5 |
+
from tensorflow.keras.preprocessing.image import ImageDataGenerator
|
6 |
+
|
7 |
+
# Load the trained model
|
8 |
+
model = tf.keras.models.load_model("MobileNet_model.h5") # Ensure the model file is in the same directory
|
9 |
+
|
10 |
+
# Define class names from your dataset
|
11 |
+
class_names = ["Fake", "Low", "Medium", "High"] # Update based on test_generator.class_indices.keys()
|
12 |
+
|
13 |
+
# Image Preprocessing
|
14 |
+
img_size = (128, 128) # Same as used in test_generator
|
15 |
+
|
16 |
+
def preprocess_image(image):
|
17 |
+
image = image.resize(img_size) # Resize to (128,128)
|
18 |
+
image = np.array(image) / 255.0 # Normalize as done in ImageDataGenerator (rescale=1./255)
|
19 |
+
image = np.expand_dims(image, axis=0) # Add batch dimension
|
20 |
+
return image
|
21 |
+
|
22 |
+
# Prediction Function
|
23 |
+
def predict(image):
|
24 |
+
image = preprocess_image(image)
|
25 |
+
predictions = model.predict(image)
|
26 |
+
predicted_class = np.argmax(predictions, axis=1)[0] # Get the predicted class index
|
27 |
+
confidence_scores = {class_names[i]: float(predictions[0][i]) for i in range(len(class_names))} # Get probability scores
|
28 |
+
|
29 |
+
return {"Predicted Class": class_names[predicted_class], "Confidence Scores": confidence_scores}
|
30 |
+
|
31 |
+
# Gradio Interface
|
32 |
+
interface = gr.Interface(
|
33 |
+
fn=predict,
|
34 |
+
inputs=gr.Image(type="pil"),
|
35 |
+
outputs=gr.JSON(), # Returns class and confidence scores
|
36 |
+
title="Waste Classification Model",
|
37 |
+
description="Upload an image to classify it into one of four categories: Fake, Low, Medium, or High."
|
38 |
+
)
|
39 |
+
|
40 |
+
if __name__ == "__main__":
|
41 |
+
interface.launch()
|